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Abstract Key words 
The Gaussian orthogonal ensemble (GOE) version of the random 

matrix theory (RMT) has been used to study the level density 

following up the proton interaction with 
44

Ca,
48

Ti and 
56

Fe. 

A promising analysis method has been implemented based on the 

available data of the resonance spacing, where widths are associated 

with Porter Thomas distribution. The calculated level density for the 

compound nuclei 
45

Sc,
49

Vand 
57

Co shows a parity and spin 

dependence, where for Sc a discrepancy in level density 

distinguished from this analysis probably due to the spin  

misassignment .The present results show an acceptable agreement 

with the combinatorial method of level density. 
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 كثافة المستويات النووية مع حسابات رنين البروتون بأستخدام نظرية مجموعة جاوس المتعددة

هدي هادي جاسم, زاهدة احمد دخيل, رشا جواد كاظمم  

 قسم الفيزياء, كلية العلوم, جامعة بغداد

 الخلاصة

احد صيغ نظرية المصفوفة العشوائية لدراسة كثافة المستويات في تفاعل البروتون  استخدمت مجموعة جاوس المتعددة التي هي

, طبقععععت طريقععععة تحليععععل واعععععدة مسععععتتدة علعععع  البيانععععات المتععععوفرة 65والحديععععد  44, التيتععععانيوم 44مععععو انويععععة ال السععععيوم 

 وماس.ث -المباعدة( الرنيتية والتي ت ون عروضها الطاقية متوافقة مو توزيعة بورتر)للمسافات

اعتمعاد العز م والبعارتي و اوضعحت التتعائق تتاقيعاث فعي كثافعة  sc ,v ,co كثافعة المسعتويات المحسعوبة لينويعة المركبعة بيتعت

وهععو نععاتق عععا ا تفععاء اللعع  المغزلععي. والتتععائق ازهععرت توافععر بععارز مععو نتععائق نظريععة التجميععو ل ثافععة  scالمسععتويات لتععواة 

 المستويات.

 

Introduction 

The modern statistical approach to nuclear 

physics utilizes RMT. A number of seminal 

papers are included in the compilation by 

Porter [1]. This new kind of statistical 

mechanics views the nucleus as a system in 

which a large number of particles are 

interacting according to unknown laws. The 

problem is how to describe an  ensemble  of  

 

 

 

systems in which all possible laws of 

interaction are equally probable. [2]. 

Although the initial theory was established 

in 1962, the high-quality data required to 

test the predictions of random matrix theory 

firstly became available in the 1970s. Haq et 

al. [3] analyzed a collection of neutron and 

proton   resonance  data  (the  Nuclear  Data 
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 Ensemble) and found an excellent 

agreement between theory and experiment. 

The data agree very well with predictions 

based on an ensemble of real symmetric 

matrices whose elements are independent 

random variables. This GOE makes striking, 

parameter-free predictions for the eigen 

value distributions (including short- and 

long-range correlations), which are 

confirmed by the data. 

The GOE theory makes striking predictions 

for the fluctuation properties and has no 

adjustable parameters. The key predictions 

of the GOE are level repulsions. Eigenvalues 

are usually examined with the nearest-

neighbor spacing (NNS) distribution and the 

Dyson-Mehta Δ3 statistic [4]. The crucial 

practical issues in the analysis of 

experimental data are sample size, purity 

and completeness. The most striking 

difference between the two extremes, GOE 

and Poisson, is the presence or absence of 

level repulsion .Anther differences that GOE 

is characterized by much smaller 

fluctuations than Poisson and more 

sensitivity to missing levels.   The effects of 

small sample sizes and of missing and 

spurious levels on the standard tests are 

described by Shriner and Mitchell [5]. 

 
Theory 

1- Width Analysis of Imperfect Sequences 

The Gaussian assumption for the 

distribution of reduced width amplitudes 

leads to the Porter-Thomas distribution [4]: 
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 In terms of a dimensionless variable, where 

γ is the reduced width and    is the 

average reduced width: 
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The Porter-Thomas distribution becomes: 
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According to this distribution, the smallest 

widths are most frequent. Since these weak 

levels may not be observed experimentally 

when an experimental level sequence is 

usually incompleted, and therefore the width 

distribution is distorted. While the absence 

of weak levels causes the sequence to be 

incomplete, [6, 7].There are various other 

effects that can also distort the observed 

width distribution. Non-statistical 

phenomena such as doorway states can 

affect the sequence. Another cause is spin 

misassignments. This leads to an impure 

sequence, which will have a different 

distribution. One must consider these effects 

when analyzing the observed resonance 

widths. 

 

2- The standard iterative method 

  Most of the levels that are missed are 

below the threshold of experimental 

observability in a particular experiment. 

Therefore, the simplest assumption is 

normally adopted. 

One assumes that all of the levels with γ
2
 

smaller than the minimum are observed and 

reduced width, γ
2
, which are not detected 

and that all resonances with widths larger 

than the minimum value are observed. 

Usually the cutoff parameter y0 is taken to 

be the smallest of all the observed widths 

divided by the average reduced width. 

The observed average reduced 

width
obs

2 of a sequence of given total 

angular momentum – parity, J
π
, is [4]: 
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where Nobs is the number of observed levels 

and the cutoff for that sequence is: 
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The observed fraction, f, of the sequence is 

obtained by: 

 

dyypf
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where f is the fraction of levels missed.  

The number of observed levels Nobs must be 

corrected by this missing fraction. The 

corrected number Nnew is closer to the true 

number of levels. Because of missing levels, 

the observed strength is smaller than the 

actual strength. 

The observed strength fs can be found from: 
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A new corrected number of levels in the 

sequence is determined from: 

f

N
N obs

new                     (8) 

 

and the total strength is corrected as: 
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Using this new average reduced width, a 

new value of y0 is defined, and the above 

steps are repeated and after a few iterations a 

constant value of (1 – f) is obtained. 
One can then determine the average level 

spacing D or level density ρ from  
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where Emax,Emin maximum and minimum 

value of incident particle energy .  

 

 

 

 

 

3-Angular momentum dependence 

The observed angular momentum 

dependence of the proton resonance level 

densities    in    the       three    nuclei   under 

consideration is compared with the 

conventional spin dependence of the level 

density formula [4] 
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where σ is the spin cut-off parameter. 

 

Results and Discussion 

1. Total level density 

By reference to the experimental results for 

p+
44

Ca [
45

Sc], p+
48

Ti [
49

V] and p+
56

Fe 

[
57

Co] reactions from [4], the observed 

resonance energies have been used to 

calculate the total level density for the given 

nuclei and certain spins. 

Comparison indicated close results with 

ref.[4] within an error mentioned in Table1. 

 
2. Angular momentum dependence f (J)  

The angular momentum dependence of the 

level densities in p +
44

Ca, p +
48

Ti, and p 

+
56

Fe are shown in Figs.1, 2, and 3, 

respectively. The solid lines represents f(J), 

and the level densities for a positive 

(negative) parity are indicated by colored 

circles. The parameter σ is taken to be 2.9, 

where the value is taken from [8] for all 

three nuclei. The agreement was good for p 

+
48

Ti and fair for p +
56

Fe. There is a large 

deviation for J = 1/2 and 3/2 in p +
44

Ca. We 

believe that this discrepancy is due to a large 

number of spin misassignments. A large 

number of misassigned levels will also 

affect the observed parity dependence in this 

nucleus. 
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Table 1:  Level densities for p +
44

Ca, p +
48

Ti, and p +
56

Fe via width analysis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

*pw: present work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ MeV
-

1
 [4] 

ρ MeV
-

1 

(pw)
* 

ƒ(pw)
* EP 

range(MeV) 
Nmissing Nobs[4] 

j
 

π
[4] 

p+
44

Ca 

177±15 181±15 0.844 2.9561-3.7095 18 116 1/2
+ 

242±26 236±20 0.797 2.9584-3.7099 24 132 1/2
- 

165±17 158±24 0.675 2.9565-3.6913 26 79 3/2
- 

247±24 242±24 0.679 2.9545-3.7109 40 125 3/2
+ 

227±20 225±19 0.759 2.9557-3.7125 31 129 5/2
+
 

p+
48

Ti 

152±13 151±10 0.879 3.0850-3.8574 12 103 1/2
+ 

159±17 166±16 0.812 3.0802-3.8568 20 105 1/2
- 

295±22 308±21 0.734 3.0873-3.8584 47 175 3/2
- 

251±22 254±21 0.727 3.0913-3.8395 38 139 3/2
+ 

313±24 318±21 0.726 3.0816-3.8595 49 180 5/2
+
 

p+
56

Fe 

67±6 73±12 0.859 3.1212-4.0005 8 56 1/2
+ 

52±7 47±15 0.813 3.1084-3.9965 7 35 1/2
- 

105±13 96±19 0.759 3.1055-3.9993 16 66 3/2
- 

56±8 57±22 0.713 3.1221-3.9614 10 35 3/2
+ 

128±13 124±15 0.816 3.1117-4.0016 17 91 5/2
+ 
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Fig.1: J dependence of level densities in p+
44

Ca, the line represents the quadratic fit for Eq. (11). 

 

Fig.2: J dependence of level densities in p+
48

Ti, the line represents the quadratic fit for Eq. (11). 
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Fig.3: J dependence of level densities in p+
56

Fe, the line represents the quadratic fit for Eq. (11). 

 
The results of the present work are 

compared with the results of the 

combinatorial method .The differences 

between results come from constancy of 

parameter  in present work but such 

feature is not found in ref. [9]. This can be 

shown in Fig.4. 

 

Fig.4: J dependence in two methods, squares represent our work, star points are computational method 

and red line is 4-polynomial fitting for Eq. (11). 
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3-Parity dependence 

It is convenient to introduce a parameter α 

for the parity asymmetry of the level 

density[8]: 

%100












          (12) 

 

where ρ+ and ρ- are the positive and negative 

parity level densities for a given value of J. 

The values for α are also shown in Fig.5, 

where the upper graph is  for J = 1/2, and the 

lower graph is for J = 3/2. Since α is 

proportional to ρ+, ρ-, positive values for    

means that there are more positive parity 

states than negative for a given J value. 

 
Table2: Parity asymmetry in the pro 

tonresonance level densities. 

*Ref [10]. 

 

Conclusions 

  Nuclear resonances following the 

predictions of the Gaussian Orthogonal 

Ensemble (GOE) version of the Random 

Matrix Theory (RMT) are considered in the 

present work. RMT predictions have been 

investigated to calculate the corrections of 

the proton resonance data. Since no 

measurements are perfect, then data are 

corrected for the imperfection of these 

measurements, where the improvement of 

the conventional analysis method based on 

the resonance widths.  

Another test has been introduced and 

showed a promising analysis method based 

on the resonance spacing, where widths 

follow the Porter-Thomas distribution. Since 

the weakest widths are not observed in 

experiments, this distribution is modified to 

account for this systematic flaw in data. The 

level density was calculated with greater 

confidence and improved precision. 

However, the disagreement in many cases 

will probably be due to non-statistical 

effects in the width distribution. 

With the newly obtained level density 

results, the parity and spin dependences of 

the level density were addressed. More 

precise data is needed and/or a careful 

analysis covering a wide range of data is 

required, before one can draw a definitive 

conclusion regarding the parity dependence 

of the level density. A conventional spin 

dependence of the level density was 

confirmed for p +
48

Ti and p +
56

Fe. For p 

+
44

Ca .There is discrepancy from the 

analytical expression and one probable cause 

is spin misassignment. 
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Fig.5: Parity asymmetry in the proton resonance level densities. The upper graph is for the J = 1/2 

sequences and the lower graph is for the J=3/2 sequences.

 

 


