Relative intensity distribution in the rotational structure for
 $B^{1} \Sigma^{+}-A^{1} \Pi$ and $B^{1} \Sigma^{+}-X^{1} \Sigma^{+}$electronic systems of BeO molecule
 Marwa Waleed Mahmod, Dhia Hamde Al-Amedy
 Department of Physics, College of Science for Women, University of Baghdad, Iraq

E-mail: marwa_88w@yahoo.com

Abstract

Theoretical spectroscopic study of Beryllium Oxide has been carried out, Boltzmann distribution of P, Q and R branches in the range of $(0 \leq \mathrm{J} \leq 13)$ at temperature 4200 K for (0-0) band for electronic transitions $\mathrm{B}^{1} \Sigma^{+}-\mathrm{A}^{1} \Pi$ and $\mathrm{B}^{1} \Sigma-\mathrm{X}^{1} \Sigma$. The Boltzmann distribution of these branches has a maximum values at equal J approximately while the values of relative population are different. For the $\mathrm{B}^{1} \Sigma^{+}-\mathrm{X}^{1} \Sigma^{+}$ transition the branch's lines extend towards lower wavenumber. This is because ($\mathrm{B}_{\mathrm{v}^{\prime}}-\mathrm{B}_{\mathrm{v}^{\prime \prime}}$) value is negative, i.e $\mathrm{B}_{\mathrm{v}^{\prime}}<\mathrm{B}_{\mathrm{v}^{\prime \prime}}$ For $\mathrm{B}^{1} \Sigma^{+}-\mathrm{A}^{1} \Pi$ transition branch's lines extend towards higher wave number .This is because ($\mathrm{B}_{\mathrm{v}^{\prime}}-\mathrm{B}_{\mathrm{v}^{\prime}}$) value is positive, i.e. $\mathrm{B}_{\mathrm{v}^{\prime}>}>\mathrm{B}_{\mathrm{v}^{\prime \prime}}$.

Key words

Boltzman distribution, electronic transitions, Beryllium Oxide molecule.

Article info.

Received: Dec. 2013
Accepted: Feb. 2014
Published: Apr. 2014

$$
\begin{aligned}
& \text { توزيع الثندة النسبية في التركيب الاوراني للأنتقالات الالكترونية } \\
& \text { اوكسيد البريليوم } \\
& \text { مروة وليد محمود، ضياء حمدي العميدي } \\
& \text { قسم الفيزياء، كلية العلوم للبنات، جامعة بغداد، العر اق }
\end{aligned}
$$

الخلاصة

 بولتزمان له قيمة عظمى عند فيمة مساوية الى J لبيما فيم التوزيع النسبي للفروع تختلف .اذ تتجه خطوط الفروع نحو الاعداد الموجية القصيرة للأنتقال الألكتروني
 . $\mathrm{B}_{\mathrm{v}^{\prime}}>\mathrm{B}_{\mathrm{v}}{ }^{\prime \prime}$

Introduction

Beryllium oxide (BeO), also known as beryllia, is an inorganic compound with the formula BeO . This colourless solid is a notable electrical insulator with a higher thermal conductivity of some metals; beryllium oxide is a white crystalline oxide. Beryllium oxide can be prepared by calcining (sintering) beryllium carbonate,
dehydrating beryllium hydroxide or igniting the metal. It has Melting point $2507^{\circ} \mathrm{C}$, 2780 K and boiling point $3900^{\circ} \mathrm{C}$, 4173 K [1]. Much interest is being focused on the theoretical aspeets of the Beryllium Oxide molecule which had astrophysical importance like other oxide of alkaline earths [2]. Lagerqvist (1948) measured the
potential energy curve and the dissocation energy for ground state, first excited state and second excited state for Beryllium oxide [3]. Tawde et al (1960) calculated Franck Condon factors for system and transition probabilities for Beryllium oxide[4]. Yoshimine (1964) calculated spectroscopic constant of ground state of BeO molecule [5]. Lto et al (1992) calculated the wave numbers for P, Q and R branches of $\mathrm{B}^{2} \Sigma$ $X^{2} \Sigma$ system of CN molecule [6]. Hirao et al (2000) calculated the intensity for P,Q and R branches of $\mathrm{A}^{2} \Pi-\mathrm{X}^{2} \Sigma$ of MgBr molecule (0-0) band [7]. Gang (2003) calculated P,Q and R branches for A-X system of WO molecule for (0-0) band [8]. Szajnal et al (2010) calculated the wave numbers for P and R branches of (0-0) (1-1) (1-2) bands of the system $\mathrm{C}^{1} \Sigma-\mathrm{X}^{1} \Sigma$ of AIH molecule [9].

Theory

The absorption or emission of electromagnetic radiation in visible and UV regions results from the transition between the electronic energy levels of the molecules. The spectra of diatomic molecules contain a large numbers of lines. This complexity in the spectrum is due to fine structures of vibrational rotational transitions. The nature of the rotational fine structure of electronic transition is largely dependent upon the levels or states involved in the transition. The transition between the levels had been governed by selection rules according to quantum mechanics. In diatomic molecules with net angular momentum Λ, the selection rule is $\Delta \Lambda=0, \pm$ 1 , where in this paper for electronic transition $\mathrm{B}^{1} \Sigma^{+}-\mathrm{X}^{1} \Sigma^{+}, \Delta \Lambda=0$ and for electronic transition $\mathrm{B}^{1} \Sigma-\mathrm{A}^{1} \Pi, \Delta \Lambda=-1$ [10]
the spectral transition for the molecule will be given by the relationship
$\Delta \mathrm{E}=\Delta \mathrm{Te}+\Delta \mathrm{Gv}+\Delta \mathrm{FJ}$,
$\mathrm{E}^{\prime}-\mathrm{E}^{\mathrm{n}}=\mathrm{Te}^{\prime}-\mathrm{Te}^{\mathrm{n}}+\mathrm{Gv}^{\prime}-\mathrm{Gv}^{\mathrm{n}}+\mathrm{FJ}-\mathrm{FJ}$,
where Δ Te represent the energy difference between electronic state, $\Delta \mathrm{G}$ (v) represent the difference between the vibrational energy level and Δ F Jrepresent the difference between the rotational energy levels. The vibration energy is given by the relationship [11].
$\mathrm{Gv}=\omega_{\mathrm{e}}\left[\mathrm{v}+\frac{1}{2}\right]-\omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}\left[\mathrm{v}+\frac{1}{2}\right]^{2}$,
where v is vibrational quantum number, $\omega \mathrm{e}$ is the harmonic vibration constant, and $\omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}$ is the anharmonicity constant the rotational energy given by the relationship

$$
\begin{equation*}
\mathrm{F}(\mathrm{~J})=\mathrm{Bv} \mathrm{~J}(\mathrm{~J}+1) \tag{4}
\end{equation*}
$$

where J is rotational quantum number

$$
\begin{equation*}
B_{v}=B e-\alpha e\left[v+\frac{1}{2}\right], \tag{5}
\end{equation*}
$$

eq(5) represent is relation of rotational constant and vibrational quantum number Where Be is the rotational rotational coustant corresponding to the equilibrium bond distance α_{e} is the vibration - rotation interaction constant.
The spectra lines calculated of $\mathrm{R}(\mathrm{J}), \mathrm{P}(\mathrm{J}), \mathrm{Q}(\mathrm{J})$ using the following equations [11]

$$
\begin{align*}
& \mathrm{P}(\mathrm{~J})=\mathrm{v}_{0}-\left(\mathrm{B}_{v}+\mathrm{B}_{v}\right) \mathrm{J}+\left(\mathrm{B}_{v}-\mathrm{B}_{v}\right) \mathrm{J}^{2} \tag{6}\\
& \mathrm{R}(\mathrm{~J})=v_{0}+2 \mathrm{~B}_{v}+\left(3 \mathrm{~B}_{v}-\mathrm{B}_{v}\right) \mathrm{J}+\left(\mathrm{B}_{v}-\mathrm{B}_{v}\right) \mathrm{J}^{2} \tag{7}\\
& \mathrm{Q}(\mathrm{~J})=v_{0}+\left(\mathrm{B}_{v}^{\prime}-\mathrm{B}_{v}^{v}\right) \mathrm{J}+\left(\mathrm{B}_{v}^{\prime}-\mathrm{B}_{v}^{v}\right) \mathrm{J}^{2} \tag{8}
\end{align*}
$$

$v_{0} \quad$ is the frequency of the band origin could be given by this equation

$$
\begin{equation*}
v_{0}=\Delta \mathrm{T}_{\mathrm{e}}+\Delta \mathrm{G}_{\mathrm{V}}, \tag{9}
\end{equation*}
$$

The intensities of the observed lines in the spectrum are proportional to the number of molecules in the initial state. The thermal rotational ($\mathrm{T}_{\text {rot }}$) and vibrational populations $\left(\mathrm{T}_{\text {vib }}\right)$ are calculated following the Boltzmann distributions [12, 13] :
$\left.\frac{N \mathrm{~g}_{\mathrm{e}}}{{ }_{N 0}}=\frac{\exp (-\mathrm{Ee} / \mathrm{kB}}{} \mathrm{T}_{\mathrm{ele}}\right) \quad \mathrm{g}_{\mathrm{v}} \exp \left(-\mathrm{Ev} / \mathrm{KB} \quad T_{\mathrm{vib}}\right) \quad g_{J} \exp \left(-E r / k B T_{\mathrm{rot}}\right)$

The distribution of the molecules among the electronic states will correspond to the equilibrium at temperature ($\mathrm{T}_{\text {elec }}$), among the vibrational states to a temperature ($\mathrm{T}_{\mathrm{wib}}$) and among the rotational states to a temperature ($\mathrm{T}_{\text {rot }}$), then:
$\mathrm{T}=\mathrm{T}_{\text {elec }}=\mathrm{T}_{\text {vib }}=\mathrm{T}_{\text {rot }}$
The partition function can be computed from the translational, rotational vibrational and electronic partition functions, can be written

$$
\begin{equation*}
Q_{\text {elec }}=\Sigma g_{e} \exp \left(-E_{e} / k_{B} T_{\text {elec }}\right) \tag{12}
\end{equation*}
$$

g_{e} is the electronic degeneracy the electronic degeneracy (statistical weighting factor) is $g_{e}=(2 s+1)$, for $\Sigma-\Sigma$ transition and $g_{e}=2(2 s+1)$ for others.
$\mathrm{Q}_{\mathrm{wib}}=\Sigma \mathrm{g}_{\mathrm{v}} \exp \left(-\mathrm{E}_{\mathrm{v}} / \mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{wib}}\right)$
g_{v} is unity for the vibration of a diatomic molecules.

$$
\begin{equation*}
\mathrm{Q}_{\text {rot }}=\Sigma \mathrm{g}_{\mathrm{J}} \exp \left(-\mathrm{E}_{\mathrm{r}} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}_{\mathrm{rot}}\right) \tag{14}
\end{equation*}
$$

g_{J} is the rotational degeneracy equal ($2 \mathrm{~J}+1$). $S_{J^{\prime} J^{\prime \prime}}$ is the Hönl-London factor lines calculated using the following equations [11]
$\mathrm{B}^{1} \Sigma-\mathrm{A}^{1} \Pi$ transition, $\Delta \Lambda=-1$

$$
\begin{align*}
& \mathrm{S}_{\mathrm{J}}^{\mathrm{R}}=(\mathrm{J}+2-\Lambda)(\mathrm{J}+1-\Lambda) / 4(\mathrm{~J}+1)(15) \\
& S_{J}^{Q}=(\mathrm{J}+1-\Lambda)(\mathrm{J}+\Lambda)(2 \mathrm{~J}+1) / 4 \mathrm{~J}(\mathrm{~J}+1) \tag{16}\\
& \mathrm{S}_{\mathrm{J}}^{\mathrm{p}}=(\mathrm{J}-1+\Lambda)(\mathrm{J}+\Lambda) / 4 \mathrm{~J} \tag{17}
\end{align*}
$$

For the $\mathrm{B}^{1} \Sigma^{+}-\mathrm{X}^{1} \Sigma^{+}$transition, $\Delta \Lambda=0$

$$
\begin{equation*}
\mathrm{S}_{\mathrm{J}}^{\mathrm{R}}=(\mathrm{J}+1+\Lambda)(\mathrm{J}+1-\Lambda) /(\mathrm{J}+1) \tag{18}
\end{equation*}
$$

$\mathrm{S}_{\mathrm{J}}^{\mathrm{Q}}=(2 \mathrm{~J}+1) \Lambda^{2} / \mathrm{J}(\mathrm{J}+1)=0$ (because Λ for Σ state $=0$)
$S_{J}^{p}=(\mathrm{J}+\Lambda)(\mathrm{J}-\Lambda) / \mathrm{J}$

Results and Discussion

The spectroscopic constants of Beryllium oxide molecule were given in Table1.

Table 1: The diatomic constants for the ground states and the excited state of BeO used in calculation [14].

State	$\mathbf{X}^{\mathbf{1}} \Sigma^{+}$	$\mathbf{A}^{\mathbf{1}} \boldsymbol{\Pi}$	$\mathbf{B}^{\mathbf{1}} \Sigma^{+}$
$\mathrm{T}_{\mathrm{e}} \mathrm{cm}^{-1}$	0	9405.61	2153.941
$\omega_{\mathrm{e}} \mathrm{cm}^{-1}$	1487.32	1144.24	1370.82
$\omega \mathrm{e} \times \mathrm{ecm}^{-1}$	11.830	8.415	7.746
$B e$	1.6510	1.3661	1.5758
$\alpha \mathrm{e}$	0.0190	0.01628	0.0154
$\mathrm{re}(\mathrm{cm})$	1.3309×10^{-8}	1.4631×10^{-8}	1.3623×10^{-8}

Relative intensity calculated by using eq(10), then product Boltzmann factor with Hönl-London factor. Fig. 1 shows the distribution of P and R branches as a function of rotational quantum number J. It can be observed that the distribution shapes are different in the values and R branch is higher than P .The relative population of rotational levels of $\mathrm{B}^{1} \Sigma^{+}-\mathrm{X}^{1} \Sigma^{+}$transition with (0-0) band at 4200 K . Since $\mathrm{B}_{\mathrm{v}^{\prime}}<\mathrm{B}_{\mathrm{v}^{\prime \prime}}$, the curves be at maximum values at $\mathbf{J}_{\max }=8$ for R branch and P branches approximately. Fig. 2 shows distribution of these branches as a function of wavenumber. For the $\mathrm{B}^{1} \Sigma^{+}$$X^{1} \Sigma^{+}$transition branch's lines extend towards lower wave number. This is because ($\mathrm{B}_{\mathrm{v}^{\prime}}-\mathrm{B}_{\mathrm{v}^{\prime \prime}}$) value is negative, i.e. $\mathrm{B}_{\mathrm{v}^{\prime}}<\mathrm{B}_{\mathrm{v}^{\prime \prime}}$. In this transition the spectra line Q was missing because $\Delta \Lambda=0$.

Table 2: The values of relative intensity for P, R branches for $B^{I} \Sigma^{+}-X^{I} \Sigma^{+}$transition.

\mathbf{J}	$\mathbf{N} / \mathbf{N 0} \mathbf{0} \mathbf{R}$ $\mathbf{B e O}$	$\mathbf{N} / \mathbf{N 0} \mathbf{0} \mathbf{- P}$ $\mathbf{B e O}$
0	$3.76 \mathrm{E}-05$	
1	$2.26 \mathrm{E}-04$	$1.13 \mathrm{E}-04$
2	$5.65 \mathrm{E}-04$	$3.77 \mathrm{E}-04$
3	$1.06 \mathrm{E}-03$	$7.92 \mathrm{E}-04$
4	$1.70 \mathrm{E}-03$	$1.36 \mathrm{E}-03$
5	$2.47 \mathrm{E}-03$	$2.06 \mathrm{E}-03$
6	$3.35 \mathrm{E}-03$	$2.87 \mathrm{E}-03$
7	$4.21 \mathrm{E}-03$	$3.68 \mathrm{E}-03$
8	$4.80 \mathrm{E}-03$	$4.27 \mathrm{E}-03$
9	$4.74 \mathrm{E}-03$	$4.26 \mathrm{E}-03$
10	$3.68 \mathrm{E}-03$	$3.34 \mathrm{E}-03$
11	$1.93 \mathrm{E}-03$	$1.77 \mathrm{E}-03$
12	$5.36 \mathrm{E}-04$	$4.94 \mathrm{E}-04$
13	$5.52 \mathrm{E}-05$	$5.13 \mathrm{E}-05$

Fig. 1: Relative population of $B^{l} \Sigma^{+}-X^{l} \Sigma^{+}$as a function of J for BeO molecule.

Fig. 3 shows the distribution of P, Q and R branches as a function of rotational quantum number J. It can be observed that the distribution shapes are different in the values and Q branch is higher than P and R branches. The relative population of $\mathrm{B}^{1} \Sigma-\mathrm{A}^{1} \Pi$ transition with (0-0) band at 4200 ${ }^{\circ} \mathrm{K}$. Since $\mathrm{B}_{\mathrm{v}^{\prime}}>\mathrm{B}_{\mathrm{v}}$, the curves be at
maximum values at $\mathrm{J}_{\text {max }}=8$ for Q, P branch and R branches approximately. Fig. 4 shows distribution of these branches as a function of wavenumber. For this transition, branch's lines extend towards higher wavenumber. This is because ($\mathrm{B}_{\mathrm{v}^{\prime}}-\mathrm{B}_{\mathrm{v}^{\prime}}$) value is positive, i.e. $\mathrm{B}_{\mathrm{v}^{\prime}>} \mathrm{B}_{\mathrm{v}}$. . In this transition appear Q branch because $\Delta \Lambda=-1$.

Table 3: The values wavenumbers and relative intensity for P, R branches for $B^{1} \Sigma^{+}-X^{1} \Sigma^{+}$transition.

Wavenumber-R $\left(\mathbf{c m}^{\mathbf{- 1}}\right)$	N/N0-R	Wavenumber-P $\left(\mathbf{c m}^{-\mathbf{1}}\right)$	$\mathbf{N} / \mathbf{N 0}-\mathbf{P}$
21199.88	$3.76 \mathrm{E}-05$		
21202.93	$2.26 \mathrm{E}-04$	21193.43	$1.13 \mathrm{E}-04$
21205.86	$5.65 \mathrm{E}-04$	21190.03	$3.77 \mathrm{E}-04$
21208.68	$1.06 \mathrm{E}-03$	21186.51	$7.92 \mathrm{E}-04$
21211.39	$1.70 \mathrm{E}-03$	21182.88	$1.36 \mathrm{E}-03$
21213.97	$2.47 \mathrm{E}-03$	21179.14	$2.06 \mathrm{E}-03$
21216.44	$3.35 \mathrm{E}-03$	21175.27	$2.87 \mathrm{E}-03$
21218.80	$4.21 \mathrm{E}-03$	21171.29	$3.68 \mathrm{E}-03$
21221.04	$4.80 \mathrm{E}-03$	21167.20	$4.27 \mathrm{E}-03$
21223.16	$4.74 \mathrm{E}-03$	21162.99	$4.26 \mathrm{E}-03$
21225.17	$3.68 \mathrm{E}-03$	21158.66	$3.34 \mathrm{E}-03$
21227.06	$1.93 \mathrm{E}-03$	21154.22	$1.77 \mathrm{E}-03$
21228.83	$5.36 \mathrm{E}-04$	21149.66	$4.94 \mathrm{E}-04$
21230.49	$5.52 \mathrm{E}-05$	21144.98	$5.13 \mathrm{E}-05$

Fig.2: Relative population of $B^{1} \Sigma^{+}-X^{l} \Sigma^{+}$as a function of wavenumber for BeO molecule.

Table 4: The values of relative intensity for Q, P and R branches for $B^{l} \Sigma^{+}-A^{l} \Pi$ transition.

\mathbf{J}	$\mathbf{N} / \mathbf{N 0} \mathbf{- R}$	$\mathbf{N} / \mathbf{N} \mathbf{0}-\mathbf{Q}$	$\mathbf{N} / \mathbf{N} \mathbf{0}-\mathbf{P}$
0	$0.00 \mathrm{E}+00$	$9.36 \mathrm{E}-06$	
1	$2.81 \mathrm{E}-05$	$8.43 \mathrm{E}-05$	$6.46 \mathrm{E}-05$
2	$9.38 \mathrm{E}-05$	$2.34 \mathrm{E}-04$	$1.62 \mathrm{E}-04$
3	$1.97 \mathrm{E}-04$	$4.60 \mathrm{E}-04$	$3.02 \mathrm{E}-04$
4	$3.38 \mathrm{E}-04$	$7.60 \mathrm{E}-04$	$4.85 \mathrm{E}-04$
5	$5.14 \mathrm{E}-04$	$1.13 \mathrm{E}-03$	$7.08 \mathrm{E}-04$
6	$7.16 \mathrm{E}-04$	$1.55 \mathrm{E}-03$	$9.60 \mathrm{E}-04$
7	$9.20 \mathrm{E}-04$	$1.97 \mathrm{E}-03$	$1.21 \mathrm{E}-03$
8	$1.07 \mathrm{E}-03$	$2.27 \mathrm{E}-03$	$1.38 \mathrm{E}-03$
9	$1.07 \mathrm{E}-03$	$2.26 \mathrm{E}-03$	$1.37 \mathrm{E}-03$
10	$8.40 \mathrm{E}-04$	$1.76 \mathrm{E}-03$	$1.06 \mathrm{E}-03$
11	$4.45 \mathrm{E}-04$	$9.30 \mathrm{E}-04$	$5.57 \mathrm{E}-04$
12	$1.25 \mathrm{E}-04$	$2.60 \mathrm{E}-04$	$1.55 \mathrm{E}-04$
13	$1.30 \mathrm{E}-05$	$2.69 \mathrm{E}-05$	$1.61 \mathrm{E}-05$

Fig.3: Relative population of $B^{l} \Sigma^{+}-A^{l} \Pi$ as a function of J for BeO molecule.

Table 5: The values of relative and wavenumber for Q, P and R branches for $B^{1} \Sigma^{+}-A^{1} \Pi$ transition.

Wavenumber-R $\left(\mathrm{cm}^{-1}\right)$	$\mathrm{N} / \mathrm{N} 0-\mathrm{R}$	Wavenumber-Q $\left(\mathrm{cm}^{-1}\right)$	$\mathrm{N} / \mathrm{N} 0-\mathrm{Q}$	Wavenumber-P $\left(\mathrm{cm}^{-1}\right)$	$\mathrm{N} / \mathrm{N} 0-\mathrm{P}$
11964.95	$0.00 \mathrm{E}+00$	11961.79	$9.36 \mathrm{E}-06$		
11968.57	$2.81 \mathrm{E}-05$	11962.24	$8.43 \mathrm{E}-05$	11959.07	$6.46 \mathrm{E}-05$
11972.64	$9.38 \mathrm{E}-05$	11963.14	$2.34 \mathrm{E}-04$	11956.81	$1.62 \mathrm{E}-04$
11977.16	$1.97 \mathrm{E}-04$	11964.49	$4.60 \mathrm{E}-04$	11954.99	$3.02 \mathrm{E}-04$
11982.13	$3.38 \mathrm{E}-04$	11966.30	$7.60 \mathrm{E}-04$	11953.63	$4.85 \mathrm{E}-04$
11987.56	$5.14 \mathrm{E}-04$	11968.55	$1.13 \mathrm{E}-03$	11952.72	$7.08 \mathrm{E}-04$
11993.43	$7.16 \mathrm{E}-04$	11971.26	$1.55 \mathrm{E}-03$	11952.26	$9.60 \mathrm{E}-04$
11999.75	$9.20 \mathrm{E}-04$	11974.42	$1.97 \mathrm{E}-03$	11952.25	$1.21 \mathrm{E}-03$
12006.53	$1.07 \mathrm{E}-03$	11978.03	$2.27 \mathrm{E}-03$	11952.69	$1.38 \mathrm{E}-03$
12013.76	$1.07 \mathrm{E}-03$	11982.09	$2.26 \mathrm{E}-03$	11953.58	$1.37 \mathrm{E}-03$
12021.43	$8.40 \mathrm{E}-04$	11986.60	$1.76 \mathrm{E}-03$	11954.93	$1.06 \mathrm{E}-03$
12029.56	$4.45 \mathrm{E}-04$	11991.56	$9.30 \mathrm{E}-04$	11956.72	$5.57 \mathrm{E}-04$
12038.14	$1.25 \mathrm{E}-04$	11996.97	$2.60 \mathrm{E}-04$	11958.97	$1.55 \mathrm{E}-04$
12047.17	$1.30 \mathrm{E}-05$	12002.84	$2.69 \mathrm{E}-05$	11961.66	$1.61 \mathrm{E}-05$

Fig.4: Relative population of $B^{l} \Sigma^{+}-A^{l} \Pi$ as a function of wavenumber for BeO molecule.

Conclusions

1-The Boltzmann distribution of $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ branches has a maximum values at equal J . The intensity of Q branch are more than of P and R branches for $\mathrm{B}^{1} \Sigma^{+}-A^{1} \Pi$ electronic transition, while for $\mathrm{B}^{1} \Sigma^{+}-\mathrm{X}^{1} \Sigma^{+}$electronic transition the intensity of R branch be more than for P branch.

2-The branch's lines extend towards higher wavenumber for $B^{1} \Sigma^{+}-A^{1} \Pi$ electronic transition, while for $\mathrm{B}^{1} \Sigma^{+}-\mathrm{X}^{1} \Sigma^{+}$electronic transition transition the branch's lines extend towards lower wave number depending on B_{v}^{\prime} and $B_{v}^{\prime \prime}$ values.

References

[1] R. Ropp, Encyclopedia of the Alkaline earth compounds, Elsevier, London, (2012) 106-107.
[2] N. Tawde and V. Tulasigeri, Acta Physica Hungarica, 60 (1986) 113.
[3] A. Lagerqvist, P.hD. Thesis, Faculty of Mathematics and Natural Science, University of Stockholm, Stockholm, (1948) p85.
[4] N. Tawde and N. Sreedhara, Proceedings of the Indian Academy of Sciences, 51(1960) p. 219.
[5] M. Yoshimine, J.Chem. Phys., 40 (1964) 2970.
[6] H. Lto, Y. Ozaki , K. Suzuki, T. kandow, and K.Kuchistu, J.Chem. Phys., 96 (1992) 4196.
[7] T.Hiroa, T. Pinchemel, B. and P Bernath, J. Mol. Spectr., 202 (2000) 221.
[8] L. Gang, P.hD. Thesis, University of Waterloo, Canada, (2003) p. 75
[9] W.Szajna and M.Zachwieja, J. Mol. Spectr., 260 (2010) 131
[10] J. Graybel, Molecular Spectroscopy, MC Graw Hill Company, New York (1988) 428-429.
[11] P.Sindhu, Fundamental of Molecular Spectroscopy, University of Delhi, New Delhi (2011) p. 251
[12] G. King, Spectrascopy and Molecular Structure, Holt, Rinehart and Winston, New York, (1964) 216-217.
[13] G. Herzberg, Molecules Spectra and Molecules Structure Spectra of Diatomic Molecules, Van Nostrand, New York, (1950) p. 208
[14] K. Huber and G. Herzberg, Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, (1979) p. 82.

