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Abstract Key words 
   The nucleon momentum distributions (NMD) and elastic electron 

scattering form factors of the ground state for some 1f-2p-shell 

nuclei, such as NiNiNi 626058 ,,  and Ni64
 isotopes have been 

calculated in the framework of the coherent fluctuation model (CFM) 

and expressed in terms of the weight function
2

)(xf . The weight 

function (fluctuation function) has been related to the nucleon 

density distribution (NDD) of the nuclei and determined from the 

theory and experiment. The NDD is derived from a simple method 

based on the use of the single particle wave functions of the 

harmonic oscillator potential and the occupation numbers of the 

states. The feature of the long-tail behavior at high momentum region 

of the NMD’s has been obtained by both the theoretical and 

experimental weight functions. The calculated elastic electron 

scattering form factors for considered isotopes are in reasonable 

agreement with those of experimental data throughout all values of 

momentum transfer .q   
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لنظائر توزيعات زخم النيكليون وعوامل التشكل للاستطاره الالكترونيه المرنة 

NiNiNiNiالنيكل 58606264  أنموذج التموج المتشاكه بأستخدام,,,

 حسن فرحان عجيمي ,يعادل خلف حمود

 العراق ,بغداد ,جامعة بغداد ,كلية العلوم ,قسم الفيزياء

 
 الخلاصة

لبعض النوى  للأستطارة الألكترونية المرنةوعوامل التشكل  للحالة الأرضية النيكليون متوزيعات زخكل من   تم حساب   

حيث تم  التعبير عنهما بدلالة دالة التموج.  Ni64 Ni58Ni,60  Ni,62,مثل نظائر النيكل 2p-1fالواقعة ضمن القشرة النووية 

وتم حسابها من النتائج النظرية والعملية لتوزيعات كثافة النيوكليون. ان اشتقاق  النيكليونكثافة توزيعات ترتبط دالة التموج مع 

ل الموجية للجسيمة المنفردة يعتمد بالأساس على كل من اعداد اشغال الحالات النووية وعلى الدوا النيكليونكثافة زيعات تو

)المستندة على دالة التموج النظرية والعملية( بصفة الذيل  النيكليونزخم  توزيعاتالمتواجدة في الجهد التوافقي. تميزت نتائج 

لنظائر  الطويل عند منطقة الزخم العالي. أظهرت هذه الدراسة بأن النتائج النظرية لعوامل التشكل للأستطارة الالكترونية المرنة

 و المحسوبة بانموذج التموج المتشاكه تتفق مع النتائج العملية و لكل قيم الزخم المنتقل . Ni58Ni, 60 Ni,26 ,Ni64النيكل 
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Introduction 

     There is no method for directly 

measuring the nucleon momentum 

distribution (NMD) in nuclei. The quantities 

that are measured by particle-nucleus and 

nucleus-nucleus collisions are the cross 

sections of different reactions, and these 

contain information on the NMD of target 

nucleons. The experimental evidence 

obtained from inclusive and exclusive 

electron scattering on nuclei established the 

existence of long-tail behavior of the NMD 

at high momentum region ( 12  fmk ) [1-6]. 

In principle, the mean field theories cannot 

describe correctly the form factors )(qF  

and the NMD simultaneously [7] and they 

exhibit a steep-slope behavior of the NMD 

at high momentum region. In fact, the NMD 

depends a little on the effective mean field 

considered due to its sensitivity to the short-

range and tensor nucleon-nucleon 

correlations [7, 8] which are not included in 

the mean field theories. 

     There are several theoretical methods 

used to study elastic electron-nucleus 

scattering, such as the plan-wave Born 

approximation (PWBA), the eikonal 

approximation and the phase-shift analysis 

method [9-15]. The PWBA method can give 

qualitative results and has been used widely 

for its simplicity. To include the Coulomb 

distortion effect, which is neglected in 

PWBA, the other two methods may be used. 

In the past few years, some theoretical 

studies of elastic electron scattering off 

exotic nuclei have been performed. Wang et 

al. [11, 12] studied such scattering along 

some isotopic and isotonic chains by 

combining the eikonal approximation with 

the relativistic mean field theory. Roca-

Maza et al. [13] systematically investigated 

elastic electron scattering off both stable and 

exotic nuclei with the phase-shift analysis 

method. Karataglidis and Amos [14] have 

studied the elastic electron scattering form 

factors, longitudinal  and   transverse,  from  

 

exotic (He and Li) isotopes and from 8B 

nucleus using large space shell model 

functions. Chu et al. [15] have studied the 

elastic electron scattering along O and S 

isotopic chains and shown that the phase-

shift analysis method can reproduce the 

experimental data very well for both light 

and heavy nuclei.  

     In the coherent fluctuation model (CFM), 

which is exemplified by the work of 

Antonov et. al. [4, 16], the local nucleon 

density distribution (NDD) and the NMD 

are simply related and expressed in terms of 

an experimentally obtainable fluctuation 

function (weight function) .)(
2

xf  They [4, 

16] investigated the NMD of ( He4
 and 

O16 ), C12
 and ( CaK 4039 ,  and Ca48

) nuclei 

using weight functions 
2

)(xf  expressed in 

terms of the experimental two parameter 

Fermi (2PF) NDD [17], the experimental 

data of Ref. [18] and the experimental 

model-independent NDD [17] , respectively. 

It is important to point out that all above 

calculations obtained in the framework of 

the CFM proved a high momentum tail in 

the NMD. Elastic electron scattering from 

Ca40
 nucleus was also investigated in Ref. 

[16], where the calculated elastic differential 

cross sections ( dd / ) were found to be in 

good agreement with those of experimental 

data. 

     Recently, Hamoudi et al. [19, 20] have 

studied the NMD and elastic electron 

scattering form factors for 1p-shell and 2s-

1d shell nuclei using the framework of 

CFM. They [19, 20] derived an analytical 

form for the NDD based on the use of the 

single particle harmonic oscillator wave 

functions and the occupation number of the 

states. The derived NDD’s, which are 

applicable throughout the whole 1p-shell 

[19] and 2s-1d shell [20] nuclei, have been 

used in the CFM. The calculated NMD and 

elastic form factors of all considered nuclei 
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have been in very good agreement with 

experimental data. 

     The aim of the present work is to extend 

the calculations of Hamoudi et al. [19, 20] to 

higher shells (such as the 2f-1p shell nuclei) 

and to derive an analytical expression for the 

NDD based on the use of the single particle 

harmonic oscillator wave functions and the 

occupation numbers of the states. The 

derived NDD is employed in determining 

the theoretical weight function 
2

)(xf  

which is used in the CFM to study the NMD 

and elastic form factors for NiNiNi 626058 ,,  

and Ni64
 isotopes. We shall see later that 

the theoretical ,)(
2

xf  based on  the derived 

NDD, is capable to provide information 

about the NMD and elastic electron 

scattering form factors as do those of 

experimental NDD of Refs. [17,  21]. 

  

Theory 

of the one body operator can be written as 

[22] 

 
nl

nlnlnl rrlr )()()12(4
4

1
)( * 


       (1) 

where nl  is the nucleon occupation 

probability of the state 0( nlln   or 1 for 

closed shell nuclei and 0< nl <1 for open 

shell nuclei) and )(rnl  is the radial part of 

the single particle harmonic oscillator wave 

function. The NDD form of Ni-isotopes is 

derived on the assumption that there are  

filled 1s, 1p and 1d orbitals and the nucleon 

occupation numbers in 2s, 1f and 2p orbitals 

are equal to, respectively, (4-
1 ), (A-40-

2 ) 

and (
1 +

2 ) and not to 4, ( 40A ) and 0 as 

in the simple shell model. Using this 

assumption in Eq. (1), an analytical form for 

the ground state NDD of Ni-isotopes is 

obtained as: 

     The nucleon density distribution (NDD) 
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where A  is the nuclear mass number, b  is 

the harmonic oscillator size parameter, the 

parameter 1  characterizes the deviation of 

the nucleon occupation numbers from the 

prediction of the simple shell model ( 1 =0 ). 

The parameter 2  in Eq. (2) is a assumed as 

a free parameter to be adjusted to obtain 

agreement with the experimental NDD. 

     The normalization condition of the NDD 

is given by [4, 17]  

,)(4
0

2




 drrrπA                                       (3) 

and the mean square radius (MSR) of the 

considered nuclei is given by [4, 17] 





0

4
)(

42 drrr
A

π
r                                  (4)    

 

The central NDD, ),0( r  is obtained from 

Eq. ( 2) as    










12

3
10

32/3

1
)0( 




b
                               (5) 

Then, 1  is obtained from Eq. (5) as 

3/)32/3)0(10(21 b                               (6)              

                                        (6) 

Substituting Eq.(2) into Eq. (4) and after 

simplification we get  












 1

2
2

2

1209


A

A

b
r                               (7) 

     The NMD of the considered nuclei is 

determined by two distinct methods. In the 

first method, it is determined by the shell 

model using the single particle harmonic 
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oscillator wave functions in momentum 

representation and is derived as 








 
 6)(

105

)40(
84)(810

22

2/3

3
)( bk

A
bkkbe

b
kn


(8) 

where k is the momentum of the particle. 

In the second method, the NMD is 

determined by the CFM, where the mixed 

density is given by [4, 16] 






0

),(
2

)(),( dxrrxxfrr                        (9) 

where: 













 







2)(

))((
)(3),(

1

0

rr
x

rrxk

rrxkj
xrr

F

F

x







 (10) 

is the density matrix for A  nucleons 

uniformly distributed in a sphere with radius 

x  and density 3

0 4/3)( xAx   . The Fermi 

momentum is defined as [4, 16] 
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and the step function   is defined by 










0,0

0,1
)(

y

y
y                           (12) 

The diagonal element of Eq. (9) gives the 

one-particle density as  

dxrxf

rrrr

x






0

2
)()(

),()(





               (13) 

In (13), )(rx  and 
2

)(xf  have the 

following forms [4, 16] 

 rxxrx


  )()( 0                            (14) 

xr
dr

rd

x
xf 

)(

)(

1
)(

0

2 


                   (15) 

The weight function 
2

)(xf  of Eq. (15), 

determined in terms of the NDD, satisfies 

the normalization condition [4, 16] 





0

2
1)( dxxf                                        (16) 

and holds only for monotonically decreasing 

NDD, i.e. 0
)(


dr

rd
. 

On the basis of Eq. (13), the NMD [ )(kn ]is 

expressed as [4, 16] 

dxknxfkn x



0

2
)()()(                         (17) 

where 

 kxkxkn Fx


 )(

3

4
)( 3                 (18) 

is the Fermi-momentum distribution of the 

system with density )(0 x . By means of 

Eqs. (15), (17) and (18), an explicit form for 

)(kn  is expressed in terms of )(r  as 
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with normalization condition 

  A
kd

kn
3

3

)2(
)(


                                   (20) 

     The elastic monopole form factor )(qF  

of the nucleus is also expressed in the CFM 

and is given by [4, 16]  

 dxqxFxf
A

qF ),()(
1

)(
2

                   (21) 

where ),( qxF  is the form factor of uniform 

charge density distribution given by 









 )cos(

)sin(

)(

3
),(

2
qx

qx

qx

qx

A
qxF      (22) 

Inclusion of the correction of the nucleon 

finite size )(qF fs  and the centre of mass 

)(qFcm  corrections in the calculations 

requires multiplying the form factor of 

Eq.(21) by these corrections. Here, )(qF fs  is 

assumed as the free nucleon form factor 

which is considered to be the same for 

protons and neutrons. This correction takes 

the form [10] 
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)/43.0( 2

)( Aq

fs eqF                           (23) 

 The correction )(qFcm  removes the spurious 

state arising from the motion of the centre of 

mass when shell model wave function is 

used and given by [10] 

)4/( 22

)( Abq

cm eqF                                  (24) 

     It is important to point out that all 

physical quantities studied in the present 

work in the framework of the CFM, such as 

 

   

 

)(kn  and )(qF , are expressed in terms of 

the weight function .)(
2

xf  Therefore, it is 

worthwhile trying to obtain the weight 

function firstly from the NDD of three 

parameter Fermi (3PF) model extracted from 

the analysis of elastic electron-nuclei 

scattering experiments and secondly from 

theoretical considerations. The NDD of 3PF   

is given by [17] 
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Introducing Eq. (25) into Eq. (15), we obtain the experimental weight function PFxf 3
2

)(  as  
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Moreover, introducing the derived NDD of 

Eq. (2) into Eq. (15), we obtain the 

theoretical weight function 
2

)(xf as 
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Results, discussion and conclusions 

     The NMD and elastic electron scattering 

form factors, ),(qF  for NiNiNi 626058 ,,  and 

Ni64
 isotopes are studied by means of the  

 

 

CFM. The NMD of Eq. (19) is calculated in 

terms of the NDD obtained firstly from 

theoretical consideration, as in Eq. (2), and 

secondly from the fit to the electron-nuclei 

scattering experiments, such as the 3PF [17]. 
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The harmonic oscillator size parameters b  

are chosen in such a way as to reproduce the 

measured root mean square radii (rms) of 

nuclei. The parameters 
1  are determined by 

introducing the chosen values of b  and the 

experimental central densities )0(exp  into 

Eq. (6). The values of the parameters b  and 

1  together with the other parameters 

employed in the present calculations for 

isotopes under study are listed in Table 1.  

 

 

Table 1: Parameters for the NDD of considered isotopes 
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4.3092 

 

0.5169 

 

0.1710227 

 

3.764 

 

2.017 

 

1.512638 

 

1.4 

 

Ni60 

 

-0.2668 

 

4.4891 

 

0.5369 

 

0.1773539 

 

 

3.769 

 

2.023 

 

1.249854 

 

2 

 

Ni62 

 

-0.2090 

 

4.4425 

 

0.5386 

 

0.1770482 

 

 

3.822 

 

2.0285 

 

1.177425 

 

2 

 

Ni64 

 

-0.2284 

 

4.5211 

 

0.5278 

 

0.1760695 

 

 

3.845 

 

2.034 

 

1.114692 

 

2 

 

 

     The dependence of the NDD’s (in fm-3) 

on r  (in fm) for NiNiNi 626058 ,,  and Ni64
 

isotopes is shown in Fig. 1. The open circle 

symbols are the fitted to the experimental 

NDD of the 3PF  [17], the solid and dashed 

curves are the calculated NDD’s of Eq. (2), 

when 021   and ,021   

respectively. This figure shows that the 

dashed curves are in poor agreement with 

the fitted to the experimental data, especially 

for small .r  Introducing the parameter 1  

(i.e., considering the higher orbitals) in the 

calculation leads to a very good agreement 

with the fitted to the experimental data as 

shown by the solid curve. 

    The dependence of NMD (in fm3) on k  

(in fm-1) for NiNiNi 626058 ,,  and Ni64
 

isotopes is shown   in    Fig. 2.  The dashed  

 

 

curves are the calculated NMD of Eq. (8) 

obtained by the shell model calculation 

using the single particle harmonic oscillator 

wave functions in momentum 

representation. The open circle symbols and 

solid curves are the NMD obtained by the 

CFM of Eq. (19) using the experimental and 

theoretical NDD, respectively. It is clear that 

the behavior of the dashed curves obtained 

by the shell model calculations is in contrast 

with those reproduced by the CFM. The 

important feature of the dashed distributions 

is the steep slope behavior when k  

increases. This behavior is in disagreement 

with the studies [4, 5, 8, 16] and it is 

attributed to the fact that the ground state 

shell model wave function given in terms of 

a Slater determinant does not take into 

account the important effect of the short 

range dynamical correlation functions. 
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Hence, the short-range repulsive features of 

the nucleon-nucleon forces are responsible 

for the high momentum behavior of the 

NMD [5, 7]. It is noted that the general 

structure of the open circles and solid  

distributions at the region of high 

momentum components is almost the same 

for NiNiNi 626058 ,,  and Ni64
 isotopes, 

where these distributions have the feature of 

long-tail behavior at momentum region 

.2 1 fmk  The feature of the long-tail 

behavior obtained by the CFM, which is in 

agreement with the studies [14, 5, 8, 16], is 

related to the existence of high densities 

)(rx  in the decomposition of Eq. (13), 

though their weight functions 
2

)(xf are 

small. 

 

Fig.1. The dependence of the NDD on  r (fm)  for NiNiNi 626058 ,,  and Ni64
 isotopes. The 

dashed and solid curves are the calculated NDD of eq.(2) when ,021  and 021  , 

respectively. The open circle symbols are the fitted to the  experimental  data [17]. 
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Fig.2. The dependence of NMD on k for NiNiNi 626058 ,,  and Ni64
isotopes. The dashed 

distributions are the results obtained by the shell model calculation of Eq.(8) using the single particle 

harmonic oscillator wave functions in the momentum representation. The open circle symbols and 

solid curves are the calculated NMD expressed by the CFM of Eq.(19)  using the experimental NDD of 

Eq.(25) and theoretical NDD of Eq.(2), respectively. 
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   The dependence of )(qF  on q  (in fm-1) 

for considered isotopes is shown in Fig. 3. 

The calculated form factors (solid curves) of 

NiNiNi 626058 ,,  isotopes, obtained in the 

framework of CFM using the theoretical 

weight function of Eq. (27), are compared 

with those of experimental data (open circle 

symbols) [23, 24]. As there is no data 

available for Ni62
 isotope, we have 

compared the calculated form factors of this 

isotope with those obtained by the Fourier 

transform  of   the 3PF   density  (triangles). 

 

 

 

 

 

 

 

 

 This figure shows that the diffraction 

minima and maxima of considered isotopes 

are reproduced in the correct places. 

However, both the behavior and the 

magnitudes of the calculated form factors of 

these isotopes are in reasonable agreement 

with those of the experimental data. 

      It is concluded that the derived form of 

NDD of Eq.(2) employed in the 

determination  of theoretical weight function 

of Eq. (27) is capable to reproduce 

information about the NMD and elastic form 

factors  as do those of the experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: The dependence of form factors on q for NiNiNi 626058 ,,  and Ni64
 isotopes. The solid curves are 

the form factors calculated using Eq.(21). The open circle symbols are the experimental data, taken from 

Refs. [23,24] . The triangles are the form factors obtained by the Fourier transform of the )(3 rPF . 
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