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Introduction

There is no method for directly
measuring  the  nucleon  momentum
distribution (NMD) in nuclei. The quantities
that are measured by particle-nucleus and
nucleus-nucleus collisions are the cross
sections of different reactions, and these
contain information on the NMD of target
nucleons. The experimental evidence
obtained from inclusive and exclusive
electron scattering on nuclei established the
existence of long-tail behavior of the NMD

at high momentum region (k > 2fm™) [1-6].
In principle, the mean field theories cannot
describe correctly the form factors F(q)

and the NMD simultaneously [7] and they
exhibit a steep-slope behavior of the NMD
at high momentum region. In fact, the NMD
depends a little on the effective mean field
considered due to its sensitivity to the short-
range and  tensor  nucleon-nucleon
correlations [7, 8] which are not included in
the mean field theories.

There are several theoretical methods
used to study elastic electron-nucleus
scattering, such as the plan-wave Born
approximation  (PWBA), the eikonal
approximation and the phase-shift analysis
method [9-15]. The PWBA method can give
qualitative results and has been used widely
for its simplicity. To include the Coulomb
distortion effect, which is neglected in
PWBA, the other two methods may be used.
In the past few years, some theoretical
studies of elastic electron scattering off
exotic nuclei have been performed. Wang et
al. [11, 12] studied such scattering along
some isotopic and isotonic chains by
combining the eikonal approximation with
the relativistic mean field theory. Roca-
Maza et al. [13] systematically investigated
elastic electron scattering off both stable and
exotic nuclei with the phase-shift analysis
method. Karataglidis and Amos [14] have
studied the elastic electron scattering form
factors, longitudinal and transverse, from
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exotic (He and Li) isotopes and from ®B
nucleus using large space shell model
functions. Chu et al. [15] have studied the
elastic electron scattering along O and S
isotopic chains and shown that the phase-
shift analysis method can reproduce the
experimental data very well for both light
and heavy nuclei.

In the coherent fluctuation model (CFM),
which is exemplified by the work of
Antonov et. al. [4, 16], the local nucleon
density distribution (NDD) and the NMD
are simply related and expressed in terms of
an experimentally obtainable fluctuation

function (weight function) |f (x)|°. They [4,

16] investigated the NMD of (*He and
*0), *C and (¥K, “Ca and **Ca) nuclei

using weight functions |f(x)|2 expressed in

terms of the experimental two parameter
Fermi (2PF) NDD [17], the experimental
data of Ref. [18] and the experimental
model-independent NDD [17] , respectively.
It is important to point out that all above
calculations obtained in the framework of
the CFM proved a high momentum tail in
the NMD. Elastic electron scattering from

“Ca nucleus was also investigated in Ref.
[16], where the calculated elastic differential
cross sections (do/dQ) were found to be in
good agreement with those of experimental
data.

Recently, Hamoudi et al. [19, 20] have
studied the NMD and elastic electron
scattering form factors for 1p-shell and 2s-
1d shell nuclei using the framework of
CFM. They [19, 20] derived an analytical
form for the NDD based on the use of the
single particle harmonic oscillator wave
functions and the occupation number of the
states. The derived NDD’s, which are
applicable throughout the whole 1p-shell
[19] and 2s-1d shell [20] nuclei, have been
used in the CFM. The calculated NMD and
elastic form factors of all considered nuclei
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have been in very good agreement with of the one body operator can be written as
experimental data. [22]

The aim of the present work is to extend 1 .
the calculations of Hamoudi et al. [19, 20] to p(r) = E;gn' A2+ D (N (1) (1)

higher shells (such as the 2f-1p shell nuclei)

. . . where &, is the nucleon occupation
and to derive an analytical expression for the

NDD based on the use of the single particle probability of the state nl (¢, =0 or 1 for
harmonic oscillator wave functions and the closed shell nuclei and 0<¢ <1 for open
occupation numbers of the states. The shell nuclei) and ¢,,(r) is the radial part of
derived NDD is employed in determining . . . i

_ _ _ 5 the single particle harmonic oscillator wave
the theoretical weight function |f(x)| function. The NDD form of Ni-isotopes is
which is used in the CFM to study the NMD derived on the assumption that there are

filled 1s, 1p and 1d orbitals and the nucleon

and elastic form factors for °°Ni,’Ni,%*Ni _ : :
occupation numbers in 2s, 1f and 2p orbitals

and ®*Ni isotopes. We shall see later that are equal to, respectively, (4-6,), (A-40-9,)
the theoretical |f(x)|2, based on the derived and (8, +6,) and not to 4, (A—40) and 0 as
NDD, is capable to provide information in the simple shell model. Using this
about the NMD and elastic electron assumption in Eq. (1), an analytical form for
scattering form factors as do those of the ground state NDD of Ni-isotopes is
experimental NDD of Refs. [17, 21]. obtained as:
Theory

The nucleon density distribution (NDD)

(") e o 3, +(115 225 j[rjz +(8—25 45 j(r)“+(2()5 +8(A—40)+45j(r)6 @)
) PR FRF 1 t37%)b) (105 % 105 15 \b) |
where A is the nuclear mass number, b is The central NDD, p(r = 0), is obtained from
the harmonic oscillator size parameter, the Eq. (2) as
parameter o, characterizes the deviation of -+ I 35 (5)
the nucleon occupation numbers from the Al )_7:3/2b3 01
prediction of the simple shell model (5,=0). Then, &, is obtained from Eq. (5) as

The parameter o0, in Eq. (2) is a assumed as
a free parameter to be adjusted to obtain
agreement with the experimental NDD.

The normalization condition of the NDD
is given by [4, 17]

8, = 210- p(0)73! 263 /3 (6)

Substituting Eqg.(2) into Eq. (4) and after
simplification we get
,  b*[9A-120
A= 4z jp(r) r*dr, 3) < >_A{ 2 +51} )
0 ) The NMD of the considered nuclei is
and the mean square radius (MSR) of the determined by two distinct methods. In the
considered nuclei is given by [4, 17] first method, it is determined by the shell

<r2 >:4: Tp(r) r* dr (4) model using the single particle harmonic

0
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oscillator wave functions in momentum
representation and is derived as
3
_ b —b2k2 4 (A- 40
n(k) = 3/2 10+8(bk)* +8°——~ 0 61 (8)
Where k is the momentum of the particle.
In the second method, the NMD is

determined by the CFM, where the mixed
density is given by [4, 16]

’ T 2 !
p(rr) =[]0 px (r, r)dx ©)
0
where:
j, (ke (X)|F =T r+r'
pr1)=3p,00 2 ”J ! )e[x | ](10)
c(XF -7 2
is the den5|ty matrlx for A nucleons

uniformly distributed in a sphere with radius
x and density p,(x) =3A/4zx*. The Fermi
momentum is defined as [4, 16]

k;(x)=[3§po(x>J

_(%jlml _g . a_(gﬁjlm
8 ) x x 8

and the step function @ is defined by
1, y>0
g =
(y) {o, y<0

The diagonal element of Eq. (9) gives the
one-particle density as

p(r)=p(r,r'=r)

(11)

(12)

= [ (9|7 o, (r)dx (13)
In (13), p.(r) and |f(x)° have the
following forms [4, 16]
P, (1) = oy ()O(x—|F]) (14)
> 1 dp(r)
O == ar 1= (15)

The weight function |f(x)" of Eq. (15),

determined in terms of the NDD, satisfies
the normalization condition [4, 16]
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T|f(x)|2dx=1 (16)

and holds only for monotonically decreasing

NDD, i.e. M <0.
dr

On the basis of Eq. (13), the NMD [ n(k) Jis
expressed as [4, 16]

n(k) = T| f (| n, (k)dx (17)
where
n, (k) =g7zx3t9(kF(x)—‘IZ‘) (18)

is the Fermi-momentum distribution of the
system with density p,(x). By means of

Egs. (15), (17) and (18), an explicit form for
n(k) is expressed in terms of p(r) as

(k) = (4,:)2 %x Hk p(x)xf’olx—[i‘j6 p(ij] (19)

with normalization condition

j (2 ) (20)

The elastic monopole form factor F(q)

of the nucleus is also expressed in the CFM
and is given by [4, 16]

F (@) =5 [T 00 F(x ax

where F(x,q) is the form factor of uniform
charge density distribution given by

F(x,q) = (qx) {sm()(jx) cos(qx)} (22)

Inclusion of the correction of the nucleon
finite size F,(q) and the centre of mass

F.,(q) corrections in the calculations

requires multiplying the form factor of
Eq.(21) by these corrections. Here, F.(q) is

assumed as the free nucleon form factor
which is considered to be the same for
protons and neutrons. This correction takes
the form [10]

(21)
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. 2
Fp () = e047A 23)
The correction F_, (q) removes the spurious

state arising from the motion of the centre of
mass when shell model wave function is
used and given by [10]

F..(q) =e@®7/N (24)

It is important to point out that all
physical quantities studied in the present
work in the framework of the CFM, such as

_ 47x’ py
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n(k) and F(q), are expressed in terms of

the weight function |f (x)|*. Therefore, it is

worthwhile trying to obtain the weight
function firstly from the NDD of three
parameter Fermi (3PF) model extracted from
the analysis of elastic electron-nuclei
scattering experiments and secondly from
theoretical considerations. The NDD of 3PF
is given by [17]

2wx(1 + eXT_C }
_ (26)

2
|f(x)|3PF - 3A 7

Moreover, introducing the derived NDD of
Eg. (2) into Eqg. (15), we obtain the

theoretical weight function |f (x)|2 as

16x*
3A7z_l/2b5

8x
3Ab?

—x2/b?

x“p(x) -

)" =

3 °)b?

2
x{%é‘l +%52 +[8—251 —fazjx——

Results, discussion and conclusions
The NMD and elastic electron scattering

form factors, F(q), for °Ni,*’Ni,®’Ni and
**Ni isotopes are studied by means of the

(27)

4 2. 2 \x
—(A-40)+—=06,+=9, |—
(35( ) 517 Zjb“}

CFM. The NMD of Eq. (19) is calculated in
terms of the NDD obtained firstly from
theoretical consideration, as in Eq. (2), and
secondly from the fit to the electron-nuclei
scattering experiments, such as the 3PF [17].
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The harmonic oscillator size parameters b
are chosen in such a way as to reproduce the
measured root mean square radii (rms) of
nuclei. The parameters ¢, are determined by
introducing the chosen values of b and the
experimental central densities p,,,(0) into
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Eq. (6). The values of the parameters b and
o, together with the other parameters

employed in the present calculations for
isotopes under study are listed in Table 1.

Table 1: Parameters for the NDD of considered isotopes

3PF [17]
2\1/2

W . - Pas (0) (rYee (f?n) 5 5
Nuclel |y | (fm) | (fm) (fm3) [171 | (fm) [17] ! ?
58N -0.1308 | 4.3092 0.5169 0.1710227 3.764 2.017 1.512638 14
60 i -0.2668 | 4.4891 0.5369 0.1773539 3.769 2.023 1.249854 2
62 N\jj -0.2090 | 4.4425 0.5386 0.1770482 3.822 2.0285 1.177425 2
84 Nj -0.2284 | 45211 0.5278 0.1760695 3.845 2.034 1.114692 2

The dependence of the NDD’s (in fm)
. 58n1; 60NI 62N 15 64 n1:
on r (in fm) for " NI,”"NI,"*NI and *"Ni
isotopes is shown in Fig. 1. The open circle
symbols are the fitted to the experimental
NDD of the 3PF [17], the solid and dashed
curves are the calculated NDD’s of EQ. (2),
when §,#6,#0 and §,=6,=0,
respectively. This figure shows that the
dashed curves are in poor agreement with
the fitted to the experimental data, especially
for small r. Introducing the parameter o,
(i.e., considering the higher orbitals) in the
calculation leads to a very good agreement
with the fitted to the experimental data as
shown by the solid curve.
The dependence of NMD (in fm?) on k
(in fm?) for Ni,®Ni,®’Ni and *Ni
isotopes is shown in Fig. 2. The dashed

38

curves are the calculated NMD of Eq. (8)
obtained by the shell model calculation
using the single particle harmonic oscillator
wave functions in momentum
representation. The open circle symbols and
solid curves are the NMD obtained by the
CFM of Eq. (19) using the experimental and
theoretical NDD, respectively. It is clear that
the behavior of the dashed curves obtained
by the shell model calculations is in contrast
with those reproduced by the CFM. The
important feature of the dashed distributions
is the steep slope behavior when Kk
increases. This behavior is in disagreement
with the studies [4, 5, 8, 16] and it is
attributed to the fact that the ground state
shell model wave function given in terms of
a Slater determinant does not take into
account the important effect of the short
range dynamical correlation functions.
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Hence, the short-range repulsive features of
the nucleon-nucleon forces are responsible
for the high momentum behavior of the
NMD [5, 7]. It is noted that the general
structure of the open circles and solid
distributions at the region of high
momentum components is almost the same

for °Ni,Ni,®Ni  and **Ni isotopes,
where these distributions have the feature of

0.25 T T T I T I T

60Ni

0.1

0.05

0.1

0.05

r(fm)

Fig.1. The dependence of the NDD on r (fm) for 58Ni,60Ni,62Ni and **Ni isotopes.
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long-tail behavior at momentum region
k>2fm™*. The feature of the long-tail
behavior obtained by the CFM, which is in
agreement with the studies [14, 5, 8, 16], is
related to the existence of high densities
P, (r) in the decomposition of Eq. (13),
though their weight functions |f(x)|2are

small.

0-25 T T T T T

The

dashed and solid curves are the calculated NDD of eq.(2) when 6, =6, =0,and 6, #6, #0,
respectively. The open circle symbols are the fitted to the experimental data [17].
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Fig.2. The dependence of NMD on k for “°Ni,”’Ni,®’Ni and °®*Ni isotopes. The dashed

distributions are the results obtained by the shell model calculation of Eq.(8) using the single particle
harmonic oscillator wave functions in the momentum representation. The open circle symbols and
solid curves are the calculated NMD expressed by the CFM of Eq.(19) using the experimental NDD of
Eq.(25) and theoretical NDD of Eq.(2), respectively.
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The dependence of F(g) on g (in fm™)

for considered isotopes is shown in Fig. 3.
The calculated form factors (solid curves) of

*Ni,Ni,””Ni isotopes, obtained in the
framework of CFM using the theoretical
weight function of Eq. (27), are compared
with those of experimental data (open circle
symbols) [23, 24]. As there is no data

available for *Ni isotope, we have
compared the calculated form factors of this
isotope with those obtained by the Fourier
transform of the 3PF density (triangles).

1E+0

1E-1
1E-2
1E-3
1E-4
1E-5
1E-6

1E-7

1E-8

1E-9 1 ] 1 ] 1 ] 1 ] 1
0

1E+0

1E-1

1E-2

1E-3

1E-4

1E-5

1E-6

1E-7

1E-8

1E-9
0

0.8 1.2
q(fm-1)

“‘153
"'-1E4
2

Fig.3: The dependence of form factors on q for *8Ni,*°Ni,**Ni and
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This figure shows that the diffraction
minima and maxima of considered isotopes
are reproduced in the correct places.
However, both the behavior and the
magnitudes of the calculated form factors of
these isotopes are in reasonable agreement
with those of the experimental data.

It is concluded that the derived form of
NDD of Eqg.(2) employed in the
determination of theoretical weight function
of Eg. (27) is capable to reproduce
information about the NMD and elastic form
factors as do those of the experimental data.

TR :
NI isotopes. The solid curves are

the form factors calculated using Eq.(21). The open circle symbols are the experimental data, taken from
Refs. [23,24] . The triangles are the form factors obtained by the Fourier transform of the o, (1) .
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