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  بعَْض نظائر القصدير بطِريقةَ معدل المجال المولد ذاتيالدراسة التركيب النووي 

  محمد فالح ماجد، علي عبد اللطيف الزبيدي

  .العراق، بغداد، جامعة بغداد، كلية العلوم، قسم الفيزياء

 الخلاصة
جية بالأستعانة بتفاعل سكيرم المعتمد على الكثافة بين كل زو-فوك لنظائر القصدير الزوجية- حسابات ھارتري نوقشت    

الكثافة النووية وكثافة  توكذلك درس. تم وصف تفاعل سكيرم والصيغة العامة لمعدل الطاقة للنوى الكرويةثم ، نيوكلونين
مت مناقشة منحنيات اضافة الى ذلك ت. نتائج القيم العمليةب نةالشحنة وجذر معدل مربع نصف القطر والغلاف النووي مقار

  .بوكليوبوف- فوك- الطاقة الكامنة بأستخدام تفاعل الازدواج بين النيوكلونات المتشابھة في حسابات ھارتري
  

Introduction 
Microscopic theories using the mean 

field (MF) approximation have been 
gaining, year after year, a high level of 
reliability for the description of static and 
dynamic properties of atomic nuclei. 
Reasonable theoretical predictions can now 
be expected to explain the properties of 
nuclei not only in their ground states but 
also in extreme conditions of spin or isospin 
far away from the normal stability of the 
nuclear matter [1]. 
       The MF methods are very successful in 
describing  and  predicting properties of 

nuclei across the chart of the nuclides. This 
is especially true for heavy nuclei, where the 
bulk properties of nuclear mater dominate 
over the surface effects. However, when 
details of nuclear structure are considered, a 
correct description of the nuclear surface is 
essential. Moreover, the surface region may 
give us invaluable information on the nature 
and strength of nuclear effective interaction 
in channels that are inaccessible by 
considering infinity systems (i.e., nuclear 
matter) [2]. 
      Static properties essentially involve 
ground states of nuclei (binding energies, 
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radii, separation energies of one or two 
nucleons, shell effects…) and are well 
described within Hartree-Fock (HF) or 
Hartree-Fock-Bogoliubov (HFB) approaches 
including pairing correlations. Dynamic 
properties more generally affect the excited 
states (single or collective excitations, giant 
resonances, fission…) for which it is 
necessary to go beyond the MF 
approximation in order to obtain a correct 
description of experimental data. These 
methods, such as the random phase 
approximation [1] or the generator 
coordinate method; perform a particular 
mixing of configurations. And to be 
consistent they are all based on a set of 
wavefunctions issued from a MF calculation 
and in this way they can be generated as 
successive approximations of the general 
Time-Dependent HF formalism [1]. 

Microscopic MF theories are based 
on the fundamental assumption that neutrons 
and protons inside the nucleus are moving 
independently from each other under the 
influence of a potential averaging their 
interactions. This approximation finds a 
steady experimental verification for instance 
in the shell model framework and the 
occurrence of magic numbers. A simple 
calculation [3] enables to justify this 
approximation when evaluating the mean 
free path (defining as the least distance 
between two collisions of a nucleon inside 
the nucleus) which turns out to be several 
times larger than the size of the nucleus. The 
explanation of this result is that the Pauli 
principle limits strongly the possible final 
states in case of nucleon-nucleon (NN) 
collisions in the nucleus [4]. As a matter of 
fact a nucleon does not see the other ones 
but only feels the average potential which 
retains it inside the nucleus. Beside the shell 
model, a MF theory enables to derive the 
nuclear MF microscopically. 
      The determination of the nuclear skin 
thickness usually involves the precise 

measurement of the root mean square (rms) 
radii of both charge and mass distributions. 
Calculations of nuclear charge and matter 
radii of nuclei are usually made in the 
framework of MF approaches, namely, the 
HF method or the HFB method including 
pairing correlations. We will use different 
Skyrme parameterizations, which can give 
an appropriate description of bulk properties 
of even-even nuclei. 
 
Theoretical consideration 

The self-consistent deformed HF 
calculations with density-dependent Skyrme 
interactions [5] and pairing correlations are 
discussed as follows. In its original form, 
Skyrme interaction can be written as a 
potential, 

 , 1ij ijk
i j i j k

V  
  

  
with a two-body part ij and three-body part  

.ijk To simplify calculations, Skyrme used a 

short range expansion for the two-body 
interaction. The matrix elements in 
momentum space are [6], 
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         The terms  and  are the 
free parameters describing the strengths of 
the different interaction terms which are 
fitted to the nuclear structure data, and the 
operators  and  are relative wave vectors 
of two nucleons,  denotes the operator 

 acting on the right; whereas, 
 is the operator  acting on 

the left.  is a spin exchange operator and 
the is Pauli spin matrix. To see how one 
deals with such an interaction in practical 
calculation it is convenient to write it in 
configuration space.  
The Skyrme interaction can be expressed as: 
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By considering the matrix elements of above 
expression in a state of relative motion 

 one can see that the 
matrix element of the first two terms (which 
are corresponding to S-wave interaction) are 
proportional to and , 
respectively, and the matrix elements of the 
last two teams (which are corresponding to 
P-wave interactions) are proportional to 

 [6]. For the Skyrme interaction 
there exists a very simple way of deriving 
the HF method, the ground state 
wavefunction of the nucleus is approximated 
by a Slater determinant (SD) built on single-
particle wavefunctions within the 
independent particle picture [7]: 

         1 1 1 2 2

1
,..., { . ..... }. 4

!
HF A A Ar r Det r r r

A
     

where i represent the single particle wave 

function, the number of single particle states 
is given by the total number of particles in 
the nucleus, A, where they will be 
characterized according to their quantum 
numbers. The expectation value of the HF 
Hamiltonian or total energy of the system is 
given by [5]: 
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The first term represents the kinetic and the 
second term represents the potential energy, 
where  indicates the necessity to account 
for the anti-symmetric nature of the NN 
interaction, where: 

 12 12 21 . 6     

The use of exchange operators for the 
position, spin, and isospin accounts for the 
antisymmetrisation, allowing the use of  
rather than  as [8]: 
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where ˆ

MP , is the Majorana exchange 

operator, P̂
and ˆ

qP  are the position, spin-

exchange and isospin operators respectively. 
The full expectation value of the 
Hamiltonian is therefore re-written as [6]: 
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For the Skyrme interaction the energy 
density  is an algebraic function of the 
nucleon densities , the kinetic 

energy , and spin densities . 
These quantities depending on the single-

particle states 
  defining in the SD wave 

function. 
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the sums in the above equations are taken 
over all occupied single-particle states. The 
expression for  was derived. Assuming 
that the subspace of occupied single-particle 
states is invariant under time reversal (which 
implies an even-even nucleus) one gets the 
following result: 
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where  and 

 The direct part of the coulomb 

int-eraction in  is  where 

     
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      By comparing the terms proportional 
to  and  in Eq. (10) one can see that the 
three-body contact interaction in second part 
of Eq. (1) is equivalent to the density-
dependent two-body force. This 
equivalence, however, is valid only for the 
case we have investigated, namely that of an 
even-even nucleus.  
The mean square radii for protons and 
neutrons are defined as (q=n or p) [9], 
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and the rms radii are simply given by  

 
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2 2. 13q qr r
The mean square radius of the charge 
distribution in a nucleus can be expressed as: 
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where  is the mean square radius of the 
point proton [Eq. (12)] and and 

arethe mean square charge radii of a 
proton and a neutron, respectively. The 
quantity is a small correction due to the 
center-of-mass motion, which is evaluated 
assuming harmonic-oscillator wave 
functions. The last term  is a tinyspin-

orbit contribution to the charge density. 
Correspondingly, we define the charge rms  
radius as [9]. 

 122 , 15c chr r  

      An interesting phenomenon in nuclear 
structure is the formation of a skin of 
neutrons on the surface of a nucleus, and its 
evolution with mass number in an isotopic 
chain [10]. A precise measurement of the 
thickness of neutron skin is important not 
only because this quantity represents a basic 
nuclear property, but also because its value 
constrains the symmetry energy term of the 
nuclear equation of state [11]. A detailed 
knowledge of the symmetry energy is 
essential for describing the structure of 
neutron-rich nuclei, and for modeling 
properties of neutron-rich matter in 
applications relevant for nuclear 
astrophysics [12]. 
       The thickness of a neutron skin in 
nuclei may be defined in different ways. 
One of these possibilities is to define it as 
the difference between the neutron and 
proton radii of the equivalent uniform 
spheres. Alternatively, it can be defined as 
the difference between the neutron and 
proton diffraction radii or Helm radii, in 
addition to that it's defined as the difference 
between the charge rms radius of neutrons 
and that of protons, as we have used in this 
work. 

     , 16c c cr r n r p    

As we move away from closed shells, 
pairing correlations play an important role 
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and should be taken into account. Two 
different forms of pairing force, the volume 
type 

     , 17vol oV r r V r r   
or the surface type,  

       , 1 , 18surf o
o

r
V r r V r r 




 
    

 
where is the saturation 
density, and Vo defines the strength of the 

interaction. The surface interaction gives the 
pairing gaps that increase very rapidly in 
light nuclei, while the volume force gives 
the values that are almost independent of A. 
The experimental data show the trend that is 
intermediate between surface and volume; 
hence, below we study the intermediate-
character pairing force that is half way in 
between, i.e., it is defined as [13]: 

         1
, 1 . 19

2 2m ix su rf v o l o
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


 
      

 
Results and discussion 
      The ground-state proton and neutron 
densities are one of the most important 
properties of nuclei, due to the short-range 
nature of the strong interaction. The ground-
state nuclear matter density of a nucleus 
serves as the MF in which the nucleons 
move. Therefore, many properties of a given 
nucleus are related to its ground-state proton 
and neutron densities. The density and the 
internal properties that discussed in this 
research was calculated by using the 
HFBRAD  (v1.00)  [14]    program.   (Which  
uses direct integration of the second-order 
HFB plus effective Skyrme interaction 
equations in a coordinate representation), 
where a standard iterative procedure is used 
to find self-consistent solutions for the 
nuclear wave functions and densities. 
Theoretically, the shape of the density 
distribution includes detailed information on 
the internal nuclear structure of the Sn 
isotopes is shown in Fig. 1. We show the 
proton  and   neutron  density  distributions  
ρq(r) [Eq. (9)] of some selected isotopes in 
the  chain considered. 
      In the Fig.1, we have chosen two 
extreme neutron-deficient and neutron-rich 
isotopes and one stable isotope between 
them. We see the evolution of these 
densities as we increase the number of 
neutrons. For 100Sn (N = Z = 50), we see that 
the two densities are  practically   the  same  

except for Coulomb effects that make the 
protons to be more extended and, therefore, 
this has to be compensated with a small 
depression in the interior. The effect of 
adding more and more neutrons is to 
populate and extend the neutron densities. 
This also makes the proton distribution 
follow the neutron one, increasing its spatial 
extension. The cost of this radius 
enlargement in the case of protons is a 
depression in the nuclear interior to preserve 
the normalization to the constant number of 
protons Z = 50. Then, it can be seen 
graphically the emergence of a region at the 
surface where the protons have practically 
disappeared while the neutrons still survive. 
On the theoretical side the difference 
between the neutrons and protons 
distribution Fig. 2 can be obtained in the 
framework of HF method (see for example 
[15]) or HFB method (see for example [16, 
17]). As a rule of thumb, a theoretical 
calculation of the nuclear density is 
considered good when it reproduces the data 
on elastic electron scattering. But some 
details of the theoretical densities might not 
be accessible in the experiments, due to poor 
resolution or limited experimental reach of 
the momentum transfer q. We have seen that 
the density dependence of Skyrme's 
interaction allows a remarkable description 
of ground-state properties of doubly-closed 
shell nuclei. 
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Fig. 1: Proton and neutron densities for some Tin isotopes calculated using SLy5 parameterization. 
 
Over all, these results are even in better 
agreement with experiment than any HF 
calculations made with density dependent 
effective forces derived from Bruckner 
theory in the local-density approximation. 
They show that Skyrme's interaction 
provides, with only five parameters shown 
its values in Table 1, a very simple 
parameterization of the nuclear effective 
interaction, which already contains all the 
ingredients necessary to give a good 
description of the average nuclear field. 
We show our results for the rms radii of the 
charge distributions [Eq. (15)].We compare 
them to the available experimental 
information obtained from various methods 
including laser and muonic atoms 
spectroscopy [18-22].We also compare 
between results with different theoretical 
force of Skyrme calculations. The SkM* is 
the closer force to the experimental data. 
The general purpose of  Fig. 3 is to show 
that different Skyrme forces do not differ 
much in their predictions of charge rms radii 
then, by comparing our results with 
experiment and with other theoretical 

results, we have evaluated the quality of our 
calculations. 
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Fig. 2: Density of even-even Sn Isotopes using 
SkM* parameterization by increasing six steps. 
Left hand side: neutron density. Right hand 
side: proton density. 
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Table 1: Parameters in the particle–hole channel for the different versions of the Skyrme forces 
implemented in the program HFBRAD [14]. 

 SIII SkM* SLy4 SLy5 
to -1128.75 -2645.0 -2488.913 -2488.345 
t1 395.0 410.0 486.818 484.230 
t2 -95.0 -135.0 -546.395 -556.690 
t3 14000.0 15595.0 13777.0 13757.0 
xo 0.45 0.09 0.834 0.776 
x1 0.0 0.0 -0.344 -0.317 
x2 0.0 0.0 -1.000 -1.000 
x3 1.0 0.0 1.354 1.263 
α 1.0 1/6 1/6 1/6 

wo 130.0 120.0 123.0 125.0 
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Fig. 3: Charge radii of Sn isotopes. The 
SLy4, SIII, and SkM* results are compared 
with Experimental data [18-22]. 
 
As mentioned previously, the thickness of a 
neutron skin in nuclei may be defined in 
different ways. One of these ways is to 
define it as the difference between the 
charge rms radius of neutrons and that of 
protons, as we have plotted in Fig. 4. The 
comparison between the calculated results 
(obtained by SkM*, SLy4 and SIII) and 
these of experimental data [23, 24] are 
demonstrated in Fig. 4.      When the nucleus 
is deformed, the thickness of the neutron 
skin might depend on the direction. It is an 
interesting and natural question to ask 
whether the deformed densities give rise to a 
different skin size in the different directions. 
It is also interesting  to  know  whether  the  
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Fig. 4: Difference between neutron and proton 
charge rms radii of Sn isotopes. The SLy4, 
SIII, and SkM* results are compared with 
Experimental data [23, 24]. 
 
emergence of the skin may be influenced by 
the nuclear shape. We study in this work 
such dependence in the case of Sn isotopes, 
which are examples of well-deformed nuclei 
characterized by a large variety of 
competing nuclear shapes [25]. In the 
present implementation, this is achieved by 
using the single-particle wave functions of 
the Transformed Harmonic Oscillator 
(THO), which allows for an accurate 
description of deformation effects and 
pairing   correlations   in  nuclei   arbitrarily 
close to the particle drip lines. The program 
HFBTHO [26], uses the axially THO single- 
particle basis to expand quasiparticle wave 
 



Iraqi Journal of Physics, 2015                                                                  Ali A. Alzubadi and  Mohammed F. Majid 

 
 

 119

functions. It iteratively diagonalizes the 
HFB Hamiltonian based on the Skyrme-
forces and zero-range pairing interaction 
until a self-consistent solution is found the 
program used the SLy4 Skyrme 
parameterizations and the mixed pairing 
force Eq. (19). The results which we obtain 
for the binding energy of the selected Sn 
isotopes as a function of the quadrupole 

parameter  ( being 
the proton quadrupole moment) are 
presented (which called the potential energy 
curves (PECs)). In Figs. (5-a) and (5-b), as 
seen that the prolate shape appears in the 
semi magic number of 106,118Sn but in       
Fig (5-c) the symmetry shape in130Sn is seen 
because the neutron number of this isotopes 
is nearly the magic number. 

 

 
Fig.(5-a):PEC for 106Sn and 112Sn by HFB using SLy4 and mixed pairing force. 

 
 

 
Fig. (5-b): PEC for 118Sn and 124Sn by HFB using SLy4 and mixed pairing force. 

 
 

Fig. (5-c): PEC for 130Sn and 136Sn by HFB using SLy4 and mixed pairing force. 
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Conclusions  
1- We conclude that our method reproduces 
the experimental data with accuracy similar 
to that of other microscopic calculations 
which may be more sophisticated but may 
also be more time consuming. This 
agreement provides a good starting point for 
making predictions of other quantities such 
as neutron-proton radii differences, where 
the experimental information is scarce and 
not as accurate as in the case of charge radii. 
2- We conclude that the energy barriers in 
the PECs depend strongly on the details of 
calculations, especially on the pairing force. 
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