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Abstract Key words 

   The effect of short range correlations on the inelastic longitudinal 
Coulomb form factors for different states of  1,4   TJ  with 
excitation energies 3.553,7.114, 8.960 and 10.310 MeV  in 18O is 
analyzed. This effect (which depends on the correlation parameter  ) 
is inserted into the ground state charge density distribution through 
the Jastrow type correlation function. The single particle harmonic 
oscillator wave function is used with an oscillator size parameter .b  
The parameters   and b  are considered as free parameters, adjusted 
for each excited state separately so as to reproduce the experimental 
root mean square charge radius of 18O. The model space of 18O does 
not contribute to the transition charge density. As a result, the 
inelastic Coulomb form factors of 18O  comes absolutely from the 
core polarization transition charge density. According to the 
collective modes of nuclei, the core polarization transition charge 
density is assumed to have the form of Tassie shape. It is found that 
the introduction of the effect of short range correlations is necessary 
for obtaining a remarkable modification in the calculated inelastic 
longitudinal Coulomb form factors and considered as an essential for 
explanation the data amazingly throughout the whole range of 
considered momentum transfer. 
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 18-لنواة الاوكسجين الغير مرنة    C4عوامل التشكل على تاثير دالة ارتباط المدى القصير

  عبدالله سوادي مديخل، عادل خلف حمودي

  العراق، بغداد، جامعة بغداد، كلية العلوم، قسم الفيزياء

  الخلاصة
                 دالة ارتباط المدى القصير على عوامل التشكل الكولومي غير المرن لحالات مختلفة  تم دراسة تاثير   
)1,4(ل   TJ 10.310و  3.553 ,7.114 ,8.960 بطاقات التھيج MeV  لقد تم .  18- لنواة الاوكسجين

دالة  على توزيع كثافة الشحنة للحالة الأرضية من خلال) الذي يعتمد على اعلومة الارتباط (ادخال ھذا التأثير 
. bكما تم اعتماد الدالة الموجية للمتذبذب التوافقي للجسيم المنفرد مع معلم حجم المتذبذب.  Jastrowالارتباط نوع

للحصول على )  لكل حالة متھيجة بصورة منفصلة( كمعلمات حرة تعَُير   bو في ھذه الدراسة تم اعتبار 
مساھمة كثافة  في ھذا البحث تم افتراض عدم. للجذر ألتربيعي لمعدل مربع  نصف قطر الشحنةالنتائج العملية 

في حسابات عوامل التشكل الكولومي غير المرن والمساھمة 18- الانتقالية لانموذج فضاء الأوكسجين الشحنة
وبموجب الصيغة التجميعية للنوى تم حساب . تكون فقط من خلال كثافة الشحنة الانتقالية لاستقطاب القلب النووي

باط المدى لقد وُجِدَ ان إدخال تأثير دالة ارت. shape) (Tassie كثافة الشحنة الانتقالية لاستقطاب القطب باستخدام
ً للحصول على تعديل ملحوظ في تحسين النتائج النظرية لعوامل التشكل الكولومية الغير  القصير يكون ضروريا
المرنة كما ووجد ايضا بانھا أساسية لتفسير البيانات بشكل ممتاز خلال مدى الزخم المنتقل المعتمد في ھذه 

 .الدراسة
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1-Introduction 
Electron scattering provides more 
accurate information about the nuclear 
structure for example size and charge 
distribution. It provides important 
knowledge about the electromagnetic 
currents inside the nuclei. Electron 
scattering have been provided a good 
test for such evaluation since it is 
sensitive to the spatial dependence on 
the charge and current densities [1, 2, 
3]. 
     The obtained information from the 
high energy electron scattering by the 
nuclei depending mainly on the 
magnitude of the de Broglie 
wavelength that is associated with the 
electron compared with the range of the 
nuclear forces. The de Broglie wave 
length that compare of the energy of 
the incident electron is in 100 MeV and 
more will be in the range of the spatial 
extension of the target nucleus. The 
wave length of electron with this 
energy represents a best probe to study 
the nuclear structure [4]. 
     Depending on the electron 
scattering, one can distinguish two 
types of scattering: in the first type, the 
nucleus is left in its ground state, that 
is called “elastic electron scattering” 
while in the second type, the nucleus is 
left on its different excited states, this 
is called  “inelastic electron scattering” 
[5, 6]. 

     In the studies of Massen et al. [7-9], 
the factor cluster expansion of Clark 
and co-workers [10-12] was utilized to 
derive an explicit form of the elastic 
charge form factor, truncated at the 
two-body term. This form, which is a 
sum of one- and two-body terms, 
depends on the harmonic oscillator 
parameter and the correlation 
parameter through a Jastrow-type 
correlation function [13]. This form is 
employed for the evaluation of the 
elastic charge form factors of closed 
shell nuclei OHe 164 ,  and Ca40  in an 

approximate technique (that is, for the 
expansion of the two-body terms in 
powers of the correlation parameter, 
only the leading terms had been kept) 
for the open ps   and ds   shell 
nuclei. Subsequently, Massen and 
Moustakidis [14] performed a 
systematic study of the effect of the 
SRC on ps   and ds   shell nuclei 
with entirely avoiding the 
approximation made in their earlier 
works outlined in [7-9] for the open 
shell nuclei. Explicit forms of elastic 
charge form factors and densities were 
found utilizing the factor cluster 
expansion of Clark and co-workers and 
Jastrow correlation functions which 
introduce the SRC. These forms 
depends on the single particle wave 
functions and not on the wave 
functions of the relative motion of two 
nucleons as was the case of our 
previous works [15-21] and other 
works [7,22,23]. 
     It is important to point out that all 
the above studies were concerned with 
the analysis of the effect of the SRC on 
the elastic electron scattering charge 
form factors of nuclei. 
     There has been no detailed 
investigation for the effect of the SRC 
on the inelastic electron scattering 
form factors of nuclei. We thus, in the 
present work, perform calculations 
with inclusion this effect on the 
inelastic Coulomb (longitudinal) form 
factors for isotopes of closed shell 
nuclei. As a test case, the isotope of 

O18  is considered in this study. In ,18O  
the model space does not contribute to 
the transition charge density, since 
there are only two neutrons distributed 
over the orbits 2/12,2/51 sd  and 

2/31d  outside the core of .16O  Thus, 
the Coulomb form factors of this 
isotope comes totally from the core 
polarization transition charge density. 
According to the collective modes of 
nuclei, the core polarization transition 
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charge density (which depends on the 
ground state charge density 
distribution) is assumed to have the 
form of Tassie shape [24]. To study the 
effect of SRC (which depends on the 
correlation parameter )  on the 
inelastic electron scattering charge 
form factors of considered nucleus, we 
insert this effect on the ground state 
charge density distribution through the 
Jastrow type correlation function [13]. 
The single particle harmonic oscillator 
wave function is used in the present 

calculations with an oscillator size 
parameter .b  The effect of SRC’s on 
the inelastic Coloumb form factors for 
the lowest four excited 4 states in O18  
isotope is analyzed. 
 
Theory 
     Inelastic electron scattering 
longitudinal (Coulomb) form factor 
involves angular momentum J  and 
momentum transfer ,q  and is given by 
[25]
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where iiTJi   and ff TJf   

are the initial and final nuclear states 
(described by the shell model states of 

spin fiJ /  and isospin fiT / ), )(ˆ qT L
J  is 

the longitudinal electron scattering 

operator, Abq
cm eqF 422

)(   is the center 

of mass correction (which removes the  
spurious states arising from the motion 
of the center of mass when                  
shell    model wave  function  is  used), 
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)( q
fs eqF   is the nucleon finite 

size correction and assumed to be the 
same for protons and neutrons,  A is 
the nuclear mass number, Z  is the 
atomic number and b  is the harmonic 
oscillator size parameter.  
     The form factor of Eq.(1) is 
expressed via the matrix elements 
reduced in both angular momentum 
and isospin [26] 

,)()(

)(ˆ
0

)1(
)12(

4
)(

22

2

1,0
2

2

qFqF

TJqTTJ
TT

TTT

JZ
qF

fscm

ii
L

JTff
T zz

ifTT

i

L
J

if

fZf


















 



(2)

       
where in Eq. (2), the bracket ( ) is the 
three- J  symbol, where J andT are 
restricted by the following selection 
rule: 

ifif JJTJJ   

,ifif TTTTT                        (3) 

and zT  is given by .
2

NZ
Tz


  

     The reduced matrix elements in 
spin and isospin space of the 
longitudinal operator between the final 
and initial many particles states of the 
system including configuration mixing 
are given in terms of the one-body 
density matrix (OBDM) elements 
times the single particle matrix 
elements of the longitudinal operator 
[27] 
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where a  and b  label single particle 
states (isospin included) for the shell 
model space. TheOBDM  in Eq. (4) is 

calculated in terms of the isospin-
reduced matrix elements as [28] 
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where z  is the isospin operator of the 
single particle. 
     The model space matrix elements 
are not adequat to describe the absolute 
strength of the observed gamma-ray 
transition probabilities, because of the 
polarization in nature of the core 
protons by the model space protons 
and neutrons. Therfore the many 
particle reduced matrix elements of the 
longitudinal electron scattering 

operator )(ˆ qT L
J  is expressed as the 

sum of the model space (ms) 
contribution and the core polarization 
(cp) contribution [28], i.e. 
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     The model space matrix element, in 
Eq. (6), is given by  
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where )(qrjJ is the spherical Bessel 

function and ),,(, rfims
J Z

 is the model 

space transition charge density, 
expressed as the sum of the product of 
the OBDM  times the single particle 
matrix elements,  given by [28]. 
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Here, )(rRnl  is the radial part of the 

harmonic oscillator wave function and 

J  is the spherical harmonic wave 

function. 
     The core-polarization matrix 
element, in eq. (6), is given by 
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where ),,( rficp

J Z
  is the core-

polarization transition charge density 
which depends on the model used for 
core polarization. To take the core-
polarization effects into consideration, 
the model space transition charge 
density is added to the core-
polarization transition charge density 
that describes the collective modes         
of nuclei. The total                    
transition   charge   density     becomes 
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     According to the collective modes 
of nuclei, the core polarization 
transition charge density is assumed to 
have the form of Tassie shape [24] 

,
),,(

)1(
2

1
),,( 1

dr

rfid
rNrfi

gs
chJ

zT
cp

tJ Z


                               

(11) 
where TN  is the proportionality 
constant given by [15] 
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which can be determind by adusting 
the reduced transition probability 

)(CJB  to the experimental value, and 
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),,( rfigs
ch  is the ground state charge 

density distribution of considered 
nuclei. 
     For ,ZN   the ground state charge 

densites )(rgs
ch  of closed shell nuclei 

may be related to the ground state 
point nucleon densities )(rgs

p  by [29, 

30] 

),(
2

1
)( rr gs

p
gs
ch                           (13) 

in unit of electronic charge per unit 
volume (e.fm-3). 
     An expression of the correlated 
density )(rgs

p  (where the effect of the 

SRC’s is included), consists of one- 
and two-body terms, is given by [31] 
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where DN  is the normalization factor 

and rÔ  is the one body density 
operator given by 
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The correlated density )(rgs
p  of Eq. 

(14), which is truncated at the two-
body term and originated by the factor 
cluster expansion of Clark and co-
workers [10-12], depends on the 

correlation parameter  through the 
Jastrow-type correlation 
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where )( ijrf  is a state-independent 

correlation function, which has the 
following properties: 1)( ijrf  for 
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 It is so clear 

that the effect of SRC’s, inserted by  
the function ),( ijrf  becomes large for 

small values of SRC parameter   and 
vice versa. 
     The one-body term, in Eq. (14), is 
well known and given by 
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where nl  is the occupation probability 

of the state nl  and )(rnl  is the radial 

part of the single particle harmonic 
oscillator wave function. 
     The two-body term, in Eq. (14), is 
given by [31] 
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The form of the two-body term 
),(22 zrO  is then originated by 

expanding the factor 

)cos2exp( 1221 wrzr  in the spherical 
harmonics and expressed as [31] 
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where 
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and 000 kll ji  is the Clebsch-Gordan 

coefficients. 
     It is important to point out that the 
expressions of Eqs. (17) and (20) are 
originated for closed shell nuclei with 

,ZN   where the occupation 

probability nl  is 0 or 1. To extend the 

calculations for isotopes of closed shell 
nuclei, the correlated charge densities 
of these isotopes are characterized by 
the same expressions of Eqs. (17) and 
(20) (this is because all isotopic chain 
nuclei have the same atomic number 

)Z  but this time different values for 
the parameters b  and   are utilized.  
     The mean square charge radii of 
nuclei are defined by 
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where the normalzation of the charge 
density distribution )(rgs

ch  is given by 
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Results and discussion  
     The effect of the SRC on inelastic 
Coulomb (longitudinal) C4 form 
factors for O18  nucleus is studied. The 
charge density distribution (based on 
using the single particle harmonic 
oscillator wave functions with oscilator 
size parameter b and occupation 
probabilities 11 s  and )11 p  is 

calculated by eq.(13) together with 
Eqs. (14), (17) and (20). The calculated 
CDD without the effect of the SRC 
(i.e., when the correlation parameter 

)0  is obtained by adjusting the 

oscillator size parameter b  so as to 
reproduce the experimental root mean 
square (rms) charge radius 

)02.0727.2( 2
exp

2 fmr   of .18O  

While the calculated CDD with the 
effect of the SRC (i.e., when )0  is 
obtained by adjusting both parameters 
b  and   so as to reproduce the 
experimental  rms charge radius of 

.18O  
The SRC effect on the inelastic 
Coulomb (longitudinal) C4 form 
factors for different states of  

1,4   TJ  with excitation energies 
3.553,7.114, 8.960 and 10.310 MeV  in 

O18  are studied. The Coulomb form 
factor in O18  comes totally from the 
core-polarization transition charge 
density because the two active 
neutrons, which move in the model 
space of this nucleus, give no 
contribution [i.e., 0),,(, rfims

J Z
 ] to 

the total transition charge density of 
eq. (10). The SRC effect is introduced 
into the ground state CDD through the 
Jastrow type correlation function. 
According to the collective modes of 
nuclei, the core polarization transition 
charge density is evaluated by adopting 
the Tassie model [Eq. (11)], where this 
model depends on the ground state 
charge density distribution. The 
proportionality constant TN  [Eq. (12)] 
is estimated by adjusting the reduced 
transition probability )(CJB  to the 
experimental value. The single particle 
harmonic oscillator wave function is 
employed with an oscillator size 
parameter .b  The CDD calculated 
without the effect of the SRC depends 
only on one free parameter (namely the 
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parameter b ), where b  is fixed with a 
value of 82.1b fm so as to reproduce 
the experimental rms charge radius of 

.18O  While the CDD calculated with 
the effect of the SRC depends on two 
free parameters (namely the harmonic 
oscillator size parameter b  and the 
correlation parameter ),  where these 
parameters are chosen for each excited 
state separately so as to reproduce the 
experimental rms charge radius of .18O  
In Table 1, we display                               
the experimental excitation               
energies xE  (MeV), experimental       

reduced transition probabilities 
)40;4( 1

 CB ( 2e fm 8 ) and the 
chosen values for the parameters b  
and   for each excited state. The root 

mean square (rms) charge radius 
calculated with the effect of the SRC is 
also displayed in this table and 
compared with that of experimental 
result. It is evident from this table that 
the values of the parameter b  
employed for calculations with the 
effect of the SRC are smaller than 
those of without the SRC            

82.1( b fm). This is attributed to the 
fact that the introduction of the SRC 
leads to enlarge the relative distance of 
the nucleons (i.e., to enlarge the size of 
the nucleus) whereas the parameter b  
(which is proportional to the radius of 
the nucleus) should become smaller so 
as to reproduce the experimental rms 
charge radius of the considered 
nucleus. 
 

 
Table 1: The experimental excitation energies and reduced transition probabilities, the 
chosen values for b and   as well as the rms charge radius calculated with the effect of 

the SRC of 18O. 
State Ex  (MeV) )4(CB

2(e fm8) 

b  
(fm) 


(fm-2) 

2/1
.

2
calr 

 (fm) 

2/1
.exp

2  r  

(fm) 
4  3.553 [32] 210)90.004.9(   [32] 1.57 1.41 2.711  

 
 

)20(727.2 [34]

4  7.114 [32] 410)06.031.1(   [32] 1.73 3.18 2.653 
4  8.96 [33] 210)41(3.9   [33] 1.73 2.47 2.725 
4  10.31 [33] 2104  [33] 1.55 1.8 2.539 
 
The inelastic Coulomb 4C  form 
factors for different transitions              
( ffgsgs TJTJ   ) in O18  are displayed 

in Figs. 1-4. It is obvious that all 
transitions considered in these figures 
are of an isovector character. Besides, 
the parity of them does not change. 
Here, the calculated inelastic 4C  form 
factors are plotted versus the 
momentum transfer q  and compared 
with those of experimental data. The 
dashed and solid curves are the 
calculated inelastic Coloumb 4C  form 
factors without and with the inclusion 
of the effect of SRC, respectively. The  
 

 
open circles, open squares, closed 
circles    and   rhomb    are   those    of  
experimental data taken from [32] and 
[33]. 
   In Fig.1, we display the inelastic 
Coulomb 4C  form factors for the 
transition 1410   ( 553.3xE  MeV 

and )4(CB 210)90.004.9(  .2e fm8 
[32]). The calculated 4C  form 
factors(displayed by the solid curve) 
are obtained by adopting the values of 

57.1b fm and 41.1  fm-2. It is 
clear from this figure that the 
calculated C4 form factors without the 
effect  of the SRC ( the  dashed  curve) 
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under predicts the experimental data 
throughout all range of considered 
momentum transfer. Incorporating  the 
effect of SRC improves  the  calculated 
C4 form factors appreciably and 
describes the experimental data 
extremely well for q<2.1fm-1. 
However, the high momentum 
transfer(2.1≤q≤2.5 fm-1) C4 form 

factors, which are not in agreement 
with the experimental data, seem to 
need some more investigations. The 
rms charge radius calculated with the 
above values of b  and   is 2.711 fm, 
which is in good agreement with the 
experimental value. 

 

Fig. 1: Inelastic Coulomb 4C  form factors for the transition to the 14  (3.553 MeV) state. 

The long-dashed and solid curves are the calculated 4C  form factors without and with the 
inclusion of the effect of the SRC, respectively. The open circle symbols are those of the 
experimental data taken from ref. [32]. 
  
     In Fig. 2, we exhibit the inelastic 
Coulomb 4C  form factors for the 
transition 1410    ( 114.7xE  

MeV and 410)06.031.1( )4( CB

.2e fm8 [32]). The calculated inelastic 
4C  form factors revealed by the solid 

curve (with the effect of the SRC) are 
obtained with applying the values of 

73.1b fm and 18.3  fm-2
. The  

dashed  curve  under predicts  the 

experimental data at q>1.2fm-1. Taking 

into account  the  effect   of   the   SRC  

 
leads to enhance the calculated form 
factors as seen by the solid curve. 
Accordingly, the 4C  form factors 
exhibited by the solid curve are in a 
satisfactory description with the 
experimental data throughout the 
whole range of considered q. The rms 
charge radius calculated by applying 
the above values of b  and   is 
2.653fm, which is less than the 
experimental value by 0.074fm, which 
corresponds to a decrease of nearly 2.7 
% of the experimental value. 
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Fig. 2: Inelastic Coulomb 4C  form factors for the transition to the 14  (7.114 MeV) state. 

The long-dashed and solid curves are the calculated 4C  form factors without and with the 
inclusion of the effect of the SRC, respectively. The open circle symbols are those of the 
experimental data taken from ref. [32]. 
 
In Fig.3, we demonstrate the inelastic 
Coulomb 4C  form factors for the 
transition 1410    ( 96.8xE  MeV 

and 210)41(3.9 )4( CB .2e fm8 
[33]). The calculated 4C  form factors 
(the solid curve) are obtained via 
utilizing the values of 73.1b fm and 

47.2  fm-2. It is apparent from this 
figure that the calculated form factors 
without the effect of the SRC (the 
dashed   curve)   do  not   describe   the  

 
experimental data very well. 
Incorporating the effect of the SRC 
leads to give a remarkable 
improvement in the calculated form 
factors (the solid curve) and then leads 
to describe the data astonishingly. The 
rms charge radius evaluated by 
utilizing the above values of b  and   
is 2.725fm, which is in good 
agreement with the experimental value. 
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Fig. 3: Inelastic Coulomb 4C  form factors for the transition to the 14  (8.96 MeV) state. 

The dashed and solid curves are the calculated 4C  form factors without and with the 
inclusion of the effect of the SRC, respectively. The open circle, open square  and rhomb 
symbols are those of the experimental data taken from ref. [33]. 
      
In Fig. 4, we present the inelastic 
Coulomb 4C  form factors for the 
transition 1410    31.10xE  MeV 

and 2104)4( CB .2e fm8 [33]). 
The calculated 4C  form factors (the 
solid curve) are obtained by employing 
the values of 55.1b fm and 8.1  
fm-2. This figure illustrates that the 
calculated result displayed by the 
dashed curve (without the effect of the 
SRC) does not predict correctly the 
experimental   data.    Introducing   the  
 

 
effect of the SRC leads to provide a 
notable modification in the calculated 

4C  form factors displayed by the solid 
curve and subsequently predicts the 
data amazingly throughout the whole 
range of considered momentum 
transfer. The rms charge radius 
estimated by using the above values of 
b  and   is 2.539fm, which is less 
than the experimental value by 0.188 
fm, which corresponds to a decrease of 
nearly 6.8%of the experimental value. 
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Fig. 4: Inelastic Coulomb 4C  form factors for the transition to the 14  (10.31 MeV) state. 

The dashed and solid curves are the calculated 4C  form factors without and with the 
inclusion of the effect of the SRC, respectively. The open circle, closed circle, open square  
and rhomb symbols are those of the experimental data taken from ref. [33]. 
 
Conclusions 
     The effect of the SRC on the 
inelastic Coulomb 4C  form factors for 
different excited 4  states is analyzed. 
This effect is included in the present 
calculations through the Jastrow type 
correlation function. As the model 
space of O18  does not contribute to the 
transition charge density, the inelastic 
Coulomb form factor of O18  comes 
completely from the core polarization 
transition charge density. According to 
the collective modes of nuclei, the core 
transition charge density is assumed to 
have the form of Tassie shape. It is 
concluded that the introduction of     
the effect of the  SRC is  necessary  for  
 

obtaining a notable modification in the 
calculated inelastic Coulomb C4 form 
factors and also essential for 
explanation the data astonishingly 
throughout the whole range of 
considered momentum transfer. 
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