Effect of indium content on X- ray diffraction and optical constants of In_xSe_{1-x} thin films

Bushra A. Hasan, Iyat M. Abdulrazzaq

Department of Physics, College of Science, University of Baghdad E-mail: Bushra abhasan@yahoo.com

Abstract

Key words

Alloys of In_xSe_{1-x} were prepared by quenching technique with different In content (x=10, 20, 30, and 40). Thin films of these alloys were prepared using thermal evaporation technique under vacuum of 10⁻⁵ mbar on glass, at room temperature R.T with different thicknesses (t=300, 500 and 700 nm). The X-ray diffraction measurement for bulk In_xSe_{1-x} showed that all alloys have polycrystalline structures and the peaks for x=10 identical with Se, while for x=20, 30 and 40 were identical with the Se and InSe standard peaks. The diffraction patterns of In_xSe_{1-x} thin film show that with low In content (x=10, and 20) samples have semi crystalline structure, The increase of indium content to x=30 decreases degree of crystallinity and further increase of indium content to x=40 leads to convert structure to amorphous. Increase of thickness from 300 to 700nm increases degree of crystallinity for all indium content. Transmittance measurements were used to calculate refractive index n and the extinction coefficient k using Swanepole's method. The optical constants such as refractive index (n), extinction coefficient (k) and dielectric constant (ε_r , ε_i) increases for low indium content samples and decreases for high indium content samples, while increase of thickness increases optical constants for all x values. The oscillator energy E_0 , dispersion energy E_d , and other parameters have been determined by Wemple - DiDomenico single oscillator approach.

In_xSe_{1-x} thin films, Refractive index, Oscillator energy, Dispersion energy, X-ray diffraction.

Article info.

Received: Sep. 2015 Accepted: Nov. 2015 Published: Apr. 2016

تأثير حيود الانديوم على حيود الاشعة السينية و الثوابت البصرية لاغشية In_xSe_{1-x} الرقيقة بشرى عباس حسن، ايات منير عبد الرزاق قسم الفيزياء، كلية العلوم، جامعة بغداد

الخلاصة

تم تحضير سبائك من In_xSe_{1-x} وبمحتوى مختلف من الانديوم (40 and 40, 20, 20, 20, 10 باستخدام طريقة التبخير الحراري تحت الفراغ الفراغ 10⁵mbar العى قواعد زجاجية عند درجة حرارة الغرفة باسماك مختلفة (10⁵mbar على قواعد زجاجية عند درجة حرارة الغرفة باسماك مختلفة (10⁵mbar على قواعد زجاجية عند درجة حرارة الغرفة باسماك مختلفة (10⁵mbar على قواعد زجاجية عند درجة حرارة الغرفة باسماك مختلفة (10⁵mbar على قواعد زجاجية عند درجة حرارة الغرفة باسماك مختلفة (10⁵mbar على قواعد زجاجية عند درجة حرارة الغرفة باسماك مختلفة (10⁵mbar على قواعد زجاجية عند درجة حرارة الغرفة باسماك مختلفة (10⁵mbar على قواعد زجاجية عند درجة حرارة الغرفة باسماك مختلفة (10⁵mbar عند 10⁻⁵mbar الفهر فحص الأشعة السينية ان سبائك _{x-1} as as as و 10⁵mbar القياسية لقيم 20,30 (10⁵mbar عند 10⁵mbar مع قم عقم عاد و 10⁵mbar عند 10⁵mbar عند 10⁵mbar مع قم عاد و 10⁵mbar عند 10⁵mbar عائل مع قم عاد مع قم عام 10⁵mbar القياسية لقيم 20,30⁵ و 4⁵. الغهر طيف الأشعة السينية لاغشية _{x-1} as 10⁵mbar الدينية ما 20⁵mbar من 10⁵mbar مع قم عد 20⁵mbar من 10⁵mbar ما⁵mbar ما⁵

Introduction

Numerous interest have been shown on Indium monoselenide (InSe) is a semiconducting layered compound since it exhibits good photoelectric property and can be used as an active media for the generation of visible and near-infrared radiation[1-14]. Indium selenide (InSe) thin films have been prepared by Hossain et al. [15] using electron-beam evaporation technique onto glass substrate at a pressure of $\sim 8 \times 10^{-5}$ Pa. Indium selenide thin films have been grown on p-type gallium selenide single crystal substrates using van der Waals epitaxy by Sa'nchez-Royo et al. [16]. The obtained findings and analysis of the experimental and measurements of X-ray diffraction for thin films, optical properties for In_xSe_{1-x} thin films at different In contents (x = 10, 20, 30, and 40) and different thicknesses (t = 300, 500 and 700 nm) which include optical energy gap as well as optical constants as well the dispersion parameters like, The oscillator energyE₀, dispersion energy E_d , static refractive index, and static dielectric constant, ε_s were also have been measured.

Experimental procedure

The bulk alloys material was prepared by mixing quantities of high-purity (99.999%) indium and selenium powder in various atomic weight proportions 10/90, 20/80, 30/70, and 40/60. The mixture was sealed in an evacuated quartz tube at pressure 10^{-5} torr and heated at 1073 K for 10 hr in furnace and then quenched in air. In_xSe_{1-x} films have been deposited by thermal evaporation technique under vacuum of about 10^{-5} torr. The substrate to source distance was kept 15cm. The samples of different thicknesses were deposited under similar conditions. The thickness of the films was estimated using the weighting method which provided that

the evaporation was done on half circle. In each deposition, a given quantity of material was taken in the boat of molybdenum and evaporated at the rate of 5 to 10 A° per second. Before evaporation, the glass substrates were cleaned thoroughly using concentrated chromic acid. detergent. isopropyl alcohol and distilled water. The film thickness was the Tolanasky measured bv interference method with an accuracy of $\pm 10 \text{ nm}[9]$.

X – Ray diffractogram (Rigaku Miniflex, Japan) were obtained of these samples to find out structural information and to identify the film structure qualitatively. The scanning angle (2 θ) range was from 20° - 80° (CuKa line). The transmittance measured by **UV-VIS** was spectrophotometer model no. Shimadzu -2450.

Results and discussion

Fig.1 shows the X-ray diffraction patterns for bulk (In_xSe_{1-x}) at different Indium contents (x = 10, 20, 30 and 40). Table 1 shows a comparison between the experimental and the standard peaks from International Centre for Diffraction Data (JCPDS) for In₁₀ Se₉₀, In₂₀ Se₈₀, In₃₀ Se₇₀ and In₄₀ Se₆₀ crystal and their miller indices. The presence of large number of peaks indicates that the films are polycrystalline in nature. It shows that all peaks in the first and second patterns which correspond to x = 10and 20% In content are identically with the Se standard peaks with hexagonal structures, with preferred plane (011) located at $2\theta = 29.62^{\circ}$ for crystal growth, while at x=30 and 40 the preferred plane for crystal growth becomes at $2\theta = 25.4^{\circ}$ peaks corresponding to plane (100) which corresponding to InSe phase on the expense of the intensity of Se plane.

The X-ray diffraction (XRD) patterns of alloys are showed the presence of polycrystalline, InSe, along with free were detected for all Se the indium concentration alloys samples suggesting a very stable structure of In-Se. Increasing of indium simply concentration indicated decrease in grain size as. No another intermediate phase such as In₂Se₃ or In₂Se has been detected which commonly observed with In-Se materials prepared by vacuum evaporation techniques [15]. The In₂Se phase may arise due to loss of Se at a lower substrate deposited temperature [17] or annealed at a higher temperature. A similar preferred orientation of (110) plane in InSe alloy was observed by Cheon. [18] and by Emziane et al. [19] in the thin films grown by the Vacuum Evaporation Technique and by Emziane et al. [17] prepared method. Whereas Jareeze [20] observed preferred orientation in the (101) while Hossain et al. [15]

indicated that plane of proffered crystal growth was (221). Also Hossain et al [21] in another paper pointed out that plane of proffered crystal growth was (420), According to XRD results, InSe films prepared e-beam thin by technique are polycrystalline hexagonal with system lattice parameters: a = 19.20 Å, b = 19.20 Å and c = 4.00 Å, respectively. The various preferred orientation reported for InSe films indicate that the deposition technique plays an important role for the orientation of InSe thin film deposition. The XRD data have also found useful for establishing d_{hkl} , the grain size, D, can be estimated using the Scherer's formula of the preferential orientation along (100) plane. The average size of crystallites was estimated about 31.5 nm increases little to 32.4 nm with increase of indium concentration to x=20, followed by decreasing to 23.1nm with further increase of indium concentration, see Table 1.

Fig. 1: X-ray diffraction patterns for bulk In:Se at different ratio.

	í l	10000 1	· Sti uci	<u></u>					
In:Se	2θ (Deg.)	FWHM (Deg.)	Int. (a.u)	d _{hkl} Exp.(Å)	G.S (nm)	hkl	Phase	d _{hkl} Std.(Å)	Card No.
	21.010	0.259	27	4.2250	31.2	(004)	InSe	4.2325	900-8968
	23.440	0.518	127	3.7922	15.7	(100)	Se	3.7828	901-1649
	25.430	0.259	40	3.4997	31.5	(100)	InSe	3.5074	900-8968
	29.620	0.471	410	3.0135	17.5	(011)	Se	3.0074	901-1649
10:90	33.060	0.541	26	2.7074	15.3	(014)	InSe	2.7006	900-8968
	36.840	0.606	20	2.4378	13.8	(015)	InSe	2.4361	900-8968
	41.180	0.306	26	2.1904	27.7	(110)	Se	2.1840	901-1649
	43.580	0.465	90	2.0751	18.4	(012)	Se	2.0734	901-1649
	45.000	0.571	110	2.0129	15.1	(110)	InSe	2.0250	900-8968
	49.890	0.476	51	1.8264	18.4	(021)	Se	1.7672	901-1649
	55.880	0.329	33	1.6440	27.3	(112)	Se	1.6387	901-1649
	59.300	0.400	20	1.5571	22.9	(025)	InSe	1.5572	900-8968
	21.022	0.249	35	4.2225	32.5	(004)	InSe	4.2325	900-8968
	23.452	0.466	100	3.7902	17.4	(100)	Se	3.7828	901-1649
	25.442	0.251	60	3.4981	32.4	(100)	InSe	3.5074	900-8968
	29.632	0.424	300	3.0123	19.4	(011)	Se	3.0074	901-1649
20:80	33.072	0.487	35	2.7064	17.0	(014)	InSe	2.7006	900-8968
	36.852	0.545	30	2.4370	15.4	(015)	InSe	2.4361	900-8968
	41.192	0.275	10	2.1897	30.8	(110)	Se	2.1840	901-1649
	45.012	0.514	150	2.0124	16.7	(110)	InSe	2.0250	900-8968
	49.902	0.428	60	1.8260	20.5	(021)	Se	1.7672	901-1649
	55.892	0.296	45	1.6437	30.4	(112)	Se	1.6387	901-1649
	59.312	0.360	36	1.5568	25.4	(025)	InSe	1.5572	900-8968
	20.984	0.313	249	4.2301	25.8	(004)	InSe	4.2325	900-8968
	23.445	0.403	48	3.7913	20.2	(100)	Se	3.7828	901-1649
	25.369	0.358	279	3.5080	22.8	(100)	InSe	3.5074	900-8968
30:70	29.620	0.447	159	3.0136	18.4	(011)	Se	3.0074	901-1649
	33.020	0.447	81	2.7106	18.5	(014)	InSe	2.7006	900-8968
	36.779	0.313	118	2.4417	26.7	(015)	InSe	2.4361	900-8968
	44.743	0.537	151	2.0239	16.0	(110)	InSe	2.025	900-8968
	49.843	0.403	107	1.8280	21.8	(021)	Se	1.7672	901-1649
	55.884	0.358	24	1.6439	25.1	(112)	Se	1.6387	901-1649
	59.329	0.447	35	1.5564	20.4	(025)	InSe	1.5572	900-8968
	21.010	0.329	450	4.2250	24.6	(004)	InSe	4.2325	900-8968
	25.430	0.353	500	3.4997	23.1	(100)	InSe	3.5074	900-8968
	29.920	0.329	50	2.9840	25.0	(011)	Se	3.0074	901-1649
40:60	33.060	0.447	120	2.7074	18.5	(014)	InSe	2.7006	900-8968
	36.840	0.353	200	2.4378	23.7	(015)	InSe	2.4361	900-8968
	44.750	0.353	200	2.0236	24.3	(110)	InSe	2.025	900-8968
	49.890	0.400	150	1.8264	21.9	(021)	Se	1.7672	901-1649
	59.300	0.541	40	1.5571	16.9	(025)	InSe	1.5572	900-8968

Table 1: Structural parameters for bulk In:Se at different ratio.

XRD patterns of In_xSe_{1-x} representative films samples with various In concentration are shown in Figs.2-5. Fig.2 depicts that as-deposited $In_{10}Se_{90}$ films with low thickness (t=300nm) begin to crystallize since only one small peak observed at $2\theta = 41.19^{\circ}$. The increase of thickness lead to well crystallization of the prepared samples films, which reflects as the increase of peaks numbers at $2\theta=23.46^{\circ}$ and 29.52° for t=500, $2\theta = 23.46^{\circ}$, 29.7° and 41.8° for x=700nm as well as increase the peak intensity.

Fig.3 depicts that as-deposited $In_{20}Se_{80}$ films, similar observation can be given, since samples with low thickness (t=300nm) begin to crystallize, only one small peak observed at $2\theta=23.44^{\circ}$. The increase of thickness lead to well crystallization of the prepared samples films, which reflects the increase of peaks numbers at $2\theta=23.48^{\circ}$ and 29.68° for t=500, $2\theta=23.44^{\circ}$ and 29.62° for x=700nm as well as increase the peak intensity.

The interesting result can be observed from Fig.4 for as-deposited In₃₀Se₇₀ films is the absent of any diffraction peak which indicate the amorphous nature of the prepared films with low thickness (i.e. t=300 and 500nm) begin to crystallize with increase of thickness to 700nm. The diffraction pattern appear two peak located observed at $2\theta=23.44^{\circ}$ and 41.181° . The further increase of In concentration can be observed from diffraction pattern of asdeposited In₄₀Se₆₀ films in Fig. 5. The significant result is the absent of any diffraction peak which indicate the amorphous nature of all the prepared films with all thickness.

These figures give indications that increase of thickness has significant effect on the structures of the prepared samples for all indium.

Fig. 2: X-ray diffraction patterns for In_{10} : Se₉₀ thin films at different thicknesses.

Fig.3: X-ray diffraction patterns for In₂₀:Se₈₀ thin films at different thicknesses.

Fig.4: X-ray diffraction patterns for In₃₀:Se₇₀ thin films at different thicknesses.

Fig.5: X-ray diffraction patterns for In₄₀:Se₆₀ thin films at different thicknesses.

Table 2 shows all peaks observed in the X-ray pattern and those FWHM and grain size and the identical standard peaks from JCPDS. The results show that grain size increases with the increase of indium concentration at t=700 nm in the first stage but the decreases with further increase of indium concentration, indeed the grain size increase from 21.6 to 23.6 nm when indium concentration increase from x=10 to 30 but then decrease to 17.2 nm when indium concentration increase to x=30. the structure at x=40 of In_xSe_{1-x} films is amorphous. The results lead to concludes that increase of indium enhance the structures up to x=20 but

then decreases the degree of crystallinity throughout decreases the grain size of the films textures. The increase of thickness leads to enhanced the structure throughout transfer the structure from amorphous to which polycrystalline, reflects as appearing of small peaks located at $2\theta = 20.86^{\circ}$ and 25.08° , the further increase of thickness leads to little shift of 20 to 20.93° and 25.379° as well as increase of grain size from 13.9nm to 22.2 nm of the plane of proffered growth (004). On the other hand increase of indium content lead to appear of InSe phase in addition of Se phase.

In:Se	t (nm)	2θ (Deg.)	FWHM (Deg.)	I	nt. (a.u)	d _{hkl} Exp.(Å)	G.S (nm)		hkl	Phase	d _{hkl} Std.(Å)	Card	No.	
	300	41.191	0.435		10	2.1898	19.5	(110)	Se	2.184	901-1	649	
10:90	500	23.460	0.376		20	3.7890	21.6	(100)	Se	3.7828	901-1	649	
		29.520	20 0.282		70	3.0235	29.1	(011)	Se	3.0074	901-1	649	
		23.460	0.376		118	3.7890	21.6	(100)	Se	3.7828	901-1	649	
	700	29.700	0.376		39	3.0056	21.9	(011)	Se	3.0074	901-1	649	
		41.180			20	2.1904	21.2	(110)	Se	2.1840	901-1649		
	300	23.440	0.426		60	3.7890	21.6	(100)	Se	3.7828	901-1	649	
	500	23.480	0.376		80	3.7858	21.6	(100)	Se	3.7828	901-1649		
20:80		29.680	0.447		40	3.0076	18.4	(011)	Se	3.0074	901-1649		
	700	23.440	0.344		110	3.7922	23.6	(100)	Se	3.7828	901-1649		
		29.620	0.282		80	3.0135	29.2	(011)	Se	3.0074	901-1	649	
	300 Amorphous													
30:70	500	Amorphous												
	700		0.471	25	3.7922	17.2	(100)	Se	3.7828		901	-1649		
		23.440			0.1000	10.2	(011)	G	2 0074		001			
		41.182	0.465	8	2.1902	18.3	(011)	Se	3.0	0/4		901	-1649	
	300		Amorphous								[
40:60	500	20.860	0.583	0.583		4.2550	13.9		(004	004) InSe 4.2325			900-8968	
		25.087	0.802		21	3.5468	10.2	10.2		(100) InSe 3.5074			900-8968	
	700	20.933	0.933 0.364		18	4.2403	22.2		(004) In		4.2325		900-8968	
		25.379	0.583		25	3.5067	14.0		(100) InSe 3.5074			900-8968		

Table 2: Structural parameters for In:Se thin films at different ratio and different thicknesses.

Optical studies

The relation between $(n^2-1)^{-1}$ and $(hv)^2$ as shown in Fig.6 can be estimate many parameters like the values of the E_0 which is an average energy gap $E_0 \approx 2Eg$, and E_d can be determined from the intercept E_0/E_d and the slope $(E_0E_d)^{-1}$. The values of dispersion parameters, Eo, Ed, static refractive index, and static dielectric constant, ε_s are listed in Table 3. The static refractive index and static dielectric constant were calculated were found to be 3.9 and 15.76, 2.94 and 8.45, 2.24 and 5.05, 2.85 and 8.13 for In10Se90 $In_{20}Se_{80}$ $In_{30}Se_{70}$ and $In_{40}Se_{60}$ respectively. Comparing the current calculated data with the previously published for the as grown sample [22,

23] as 2.97 and 25.05, 3.07 and 9.43 for $In_{50}Se_{50}$, is well coincide with these data.

It was observed that, the single oscillator energy E0 decreases while, both the dispersion energy Ed and n_0 increases with the increase of In content. An important indication of the WDD model is that the relation between the dispersion energy, Ed, and other physical parameters of the material like the effective coordination number of the cation nearest-neighbor to the anion, the formal chemical valency of the anion, the effective number of valence electrons per anion. Thus to evaluate the compositional trended of Ed it is suitable to proposed

that, the observed decrease in *E*d with increasing In content up x=30 is primarily due to the change in the ionicities (homopolar Se–Se bonds are introduced together with extra Se atoms) [24], which decreases with increasing the In content (see Table 3). The values of the single oscillator energy, the dispersion energy, the static refractive index for the $InxSe_{1-x}$ thin films are listed in Table 3.

Fig.6: Variation of $(hv)^2$ with $(n^2-1)^{-1}$ of In_xSe_{1-x} thin films with different indium content and different thicknesses.

Table 3: Value of $E_d E_0$, n_o , and ε_s of $In_x Se_{1-x}$ thin films with different indium content and different thicknesses.

					•	
Sample	t(nm)	Ed	Eo	n _o	$\epsilon_s = n_0^2$	$Eg = E_o/2$
$In_{10}Se_{90}$	300	928.1259	312.5	3.970003	15.76092	1.985001
	500	140.7662	56.17978	3.505638	12.2895	1.752819
	700	60.74555	35.33569	2.719099	7.3935	1.35955
$In_{20}Se_{80}$	300	22.44316	11.76471	2.907669	8.454538	5.882353
	500	9.801615	7.64526	2.282051	5.207758	3.82263
	700	7.137535	6.480881	2.101322	4.415552	3.240441
$In_{30}Se_{70}$	300	10.43937	8.368201	2.247505	5.051279	4.1841
	500	11.52557	7.936508	2.452222	6.013392	3.968254
	700	7.136804	6.978367	2.022704	4.091332	3.489184
$In_{40}Se_{60}$	300	22.89063	12.36094	2.851852	8.133059	1.425926
	500	11.79079	8.912656	2.322926	5.395987	1.161463
	700	5.212948	4.474273	2.165094	4.687631	1.082547

For all the prepared thin film samples, optical transmission was measured in the wavelength range 200-1100 nm. The optical constants are obtained by using only the transmission spectrum. For the method proposed bv Swanepoel [25], the optical constants are deduced from the fringe patterns in transmittance spectrum. the The refractive index in the transmittance region where $\alpha \approx 0$ was calculated by using the formula

$$n = \sqrt{N + \sqrt{N^2 - s^2}} \text{ where}$$
$$N = \frac{2S}{T_{\min}} - \frac{S^2 + 1}{2} \tag{3}$$

In the weak region where the absorption coefficient ($\alpha \neq 0$) the value of N is given by

$$N = 2S \frac{T_{\max} - T_{\min}}{T_{\max} T_{\min}} + \frac{S^2 + 1}{2}$$
(4)

where T_{max} is the upper extreme transmission point and T_{min} lower extreme transmission point for particular wavelength and 's' is the refractive index of the glass substrate (S =1.5). If n₁ and n₂ are the refractive indices of two adjacent maxima or minima at wavelengths λ_1 and λ_2 , then the thickness of the film is given by

$$d = \frac{\lambda_1 \lambda_2}{2(\lambda_1 n_2 - \lambda_2 n_1)} \tag{5}$$

The extinction coefficient k can be calculated from the following relation

$$k = \frac{\lambda}{4\pi d} \ln(\frac{1}{x}) \tag{6}$$

where x is the absorbance, given by

$$x = \frac{E_M - [E_M^2 - (n^2 - 1)^3 (n^2 - s^4)]^{1/2}}{(n - 1)^3 (n - s^2)}$$
(7)

and

$$E_{M} = \frac{8n^{2}s}{T_{M}} + (n^{2} - 1)(n^{2} - s^{2})$$
(8)

The absorption coefficient α can be calculated from the relation given as:

$$\alpha = \frac{4\pi k}{\lambda} \tag{9}$$

The real and imaginary dielectric constant of amorphous thin films has been calculated by the relation (10) and (11), respectively.

$$\varepsilon_r = n^2 - k^2$$
 (10)
and

$$\varepsilon_i = 2nk \tag{11}$$

Fig.7 shows the transmittance spectra of In_xSe_{1-x} films for different In content and thicknesses (300, 500 and 700) nm. It is obvious that the transmittance of all deposited thin films increases with increasing of (λ) . On the other hand the transmittance decreases with the increase of In content and sample thickness which means increase in the reflection and absorption. The shifts of transmittance toward (lower energies) accompanied the thickness increment explained according to the fact that increasing of thickness approach the structure of samples from bulk material which indicated that absorption edge is shifted to the higher wavelengths with the increase of the thickness of the films and the effect of photo darkening is remarkable, while the decrease of transmittance with the increase of In content attributed to that the addition of In to Se increases the density and consequently the samples because more opaque to the incident light. It is clearly seen from transmittance spectra that in the weak absorption region, sharp interference fringes were apparent with increase of t indicated that the interfaces air/layer, and layer/glass were flat and parallel.

Strong absorption was observed at wavelengths lower than 700 nm. Moreover, the observed maxima and minima positions of the interference fringes in reflectance spectra at the same wavelength positions of the corresponding minima and maxima in transmittance spectra indicates the optical homogeneity of the deposited films. The refractive index of the deposited In_xSe_{1-x} films have been determined from the recorded transmission spectra using Swanoepl's method. The spectral distribution of refractive index (n) and extinction coefficient (k) for three thickness of the In_xSe_{1-x} system with wavelength is given in Figs. 8 and 9 respectively. From the Figs. 8 and 9 it is clear that both the refractive index and extinction coefficient decrease with the increase in the wavelength. It is clearly seen that dispersion in the values of refractive indices for different film thickness has been observed especially for higher wavelengths values, and the dispersion increases slightly at lower wavelength values. This result indicates that the refractive index is thickness dependent. It can be noticed from these figures and also from Table 4 that the refractive index, decreases with the increase of thickness for polycrystalline samples i.e. at x=10 and 20, while n increases with thickness for amorphous samples i.e. at x=30 and 40; indeed n decreases from 2.01653 to 1.71527 and from 1.90870 to 2.04516 while n increases 1.69944 to 2.12745 and from 1.57742 to 2.08590, when t increases from 300 to 700nm at λ =800nm. This decrease of n attributed to decrease of localized states accompanied.

structural enhancement while increase of n attributed to increase of absorbance related the amorphous state. On the other hand, the refractive index decreases with the increase of the In content up to 30 and then n get increase with indium content, indeed(n) decreases from 2.01653 to 1.69944 and from 1.95118 to 1.86899 and from 1.71527 to 1.71527 when In content increases from 10 to 30 but then increase to 2.12745, 1.84863, 2.08590 when x=40 for 300, 500 and 700 nm, respectively.

It can be observed from Fig. 8 and Table 4 that the extinction coefficient varies rapidly with the increase of In content and film thickness for all prepared samples. It is obvious that k decreases with increase of indium in first stage but then increases with further increase of indium. This is attributed to the same reason previously. mentioned since the increase of In content eliminate the defect states and increase grain size in the first but the then change the structure to amorphous, which in turn of increases the absorbance the material.

The variation of real ε_r and imaginary ε_i parts of the dielectric constant values with wavelength in the range of (300 – 1100)nm for In_xSe_{1-x} films deposited at different In contents (x = 10, 20, 30 and 40) and thicknesses (t = 300, 500 and 700 nm) are shown in Figs.10 and 11.

The behavior of ε_r is similar to that of the refractive index because of the smaller value of k² compared with n² value according to Eq. (10), while ε_i depends mainly on the k values according the Eq. (11). It is found that ε_r changes with the increases of film thickness and In content. Moreover ε_r found to decrease with thickness for polycrystalline samples i.e. x=10 and 20, while ε_r tend to increase with thickness for amorphous samples i.e. x=30 and 40, as shown in Fig. 9 and Table 4.

The imaginary part of dielectric constant ε_i reveals the same behavior of ε_r with the variation of film thickness and In content. It is clear

from Fig.10 that ε_i decreases with thickness for low indium content samples, but then increase for high

indium content samples as shown in Table 4. The same explanation of n and k can be given to ε_r and ε_i .

Fig. 8: Variation of refractive index with the wavelength for In_xSe_{1-x} films with different In content and film thickness.

Fig. 9: Variation of extinction coefficient k with wavelength for In_xSe_{1-x} films with different In content and film thickness.

Fig. 10: Variation of ε_r with the wavelength for In_xSe_{1-x} films with different In content and film thickness.

t (nm)	х	Т%	k	n	ε _r	εί
300	10	0.84247	0.01755	2.0165	4.066	0.07081
	20	0.85581	0.01487	1.9087	3.643	0.056784
	30	0.84690	0.01766	1.6994	2.888	0.060029
	40	0.91828	0.00096	2.1274	4.526	0.004125
500	10	0.86436	0.01279	1.9511	3.807	0.049934
	20	0.84247	0.01755	2.0165	4.066	0.07081
	30	0.83702	0.01941	1.8689	3.493	0.072582
	40	0.91169	0.00246	1.8486	3.417	0.009115
700	10	0.92903	-0.00131	1.7152	2.942	-0.0045
	20	0.86069	0.01334	2.0451	4.182	0.054588
	30	0.79496	0.03129	1.5774	2.488	0.098731
	40	0.51262	0.11393	2.0859	4.350	0.475299

Table 4: Illustrate the values of optical constants at λ =800 nm for In_xSe_{1-x} films with different In content and thicknesses.

References

[1] T.Matsushita, T.T.Nang, M.Okuda, A.Suzuki, S.Yokota, Jap. J. App1. Phys., 15 (1976) 901.

[2] T.T.Nang, T.Matsushita, M.Okuda, A.Suzuki, Jap. J. Appl. Phys., 16 (1977) 253.

[3] A.Segura, J.M.Besson, A.Chevy, M.S.Martin, Nuovo Cimento, 38B (1977) 345.

[4] C.Cleman, X.I.Saldana, P.Munz, E.Bucher, Phys. Stat. Solidi (a), 49 (1978) 437.

[5] V.L.Bakumenko, Z.D.Kova1yuk, L.N.Kurbatov, V.F.Chishko, Sov.Phys. Semicond., 12 (1978) 1307.

[6] A.Segura, J.P.Guesdon, J.M. Besson, A.Chevy, Rev.Phys.App1, 14 (1979) 253.

[7] K.Ando and A.Katsui, Thin Solid Films, 76 (1981) 141.

[8] Y.Hasegawa and Y.Abe, Phys.Stat. Solidi(a), 70 (1982) 615.

[9] T.Matsushita, A.Suzuki, M.Okuda, H.Naitoh, T.Nakau, Jap. J. App1. Phys., 22 (1983) 762.

[10] A.Segura, J.P.Guesdon, J.M. Besson, A.Chevy, J. App1. Phys., 54 (1983) 876.

[11] A.Segura, J.L.Valdes, F.Pomer, A.Cantarero, A.Chevy, inProc.5th' E.C.Photovolt. Sol. Energy Conf., Kavouri, 1983 (Reidel, Dordrecht, 1984), p.927.

[12] J.L.Valdes, A.Cantarero, F.Pomer, J.P.Martinez, A.Sugura, B.Mari, A.Chevy, in: Proc. Euro. Communities Photovolt. Sol. Energy Conf., Londres, 1985 (Reidel, Dordrecht, 1985), p.774. [13] J.Martinez-Pastor, A.Segura, J.L.Valdes, A.Chevy, J. Appl. Phys., 62 (1987) 1477.

[14] S.Shigetomi, T.Ikari, Y.Koga, S.Shigetomi, Jap. J. Appl. Phys., 27 (1988) 1271.

[15] J. Hossain, M. Julkarnain, K. S. Sharif, K. A. Khan, International Journal of Renewable Energy Technology Research, 2, 9, September (2013) 220 – 226.

[16] J. F. Sa'nchez-Royoa, A. Segura, O. Lang, E. Schaar, C. Pettenkofer, W. Jaegermann, W. Jaegermann, Journal of Applied Physics, 90, 6 (2001)2818.

[17] K. Ando and A. Katsui. Thin Solid Films, 76 (1981) 141.

[18] J.Cheon, J.Arnold, K.M. Yu, E.D. Bourret, Chem. Mater, 7,12 (1995) 2273–2276. [19] M.Emziane, R. Le Ny, J. Phys. D. Appl. Phys. 32 (1999) 1319.

[20] Amar H. Jareeze, Journal of Al-Nahrain University, 16, 2 July (2013) 124-128.

[21] J. Hossain, Md. Julkarnain, K. Shaifullah Sharif, K. Alam Khan, Journal of Physical Science and Application, 1 (2011) 37-43.

[22] S. H. Wemple, M. DiDomenico, Phys. Rev., B 3 (1971) 1338.

[23] A. F. Qasrawi, Optical Materials, 29 (2007) 1751.

[24] H. Bouzouita, N. Bouguila, S. Duchemin, S. Fiechter, A. Dhouib, Renewable Energy, 25 (2002) 131.

[25] R. Swanepoel, J. Phys. E: Sci. Instrum., 16 (1983) 1214.