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Abstract Key words 
     Nano-structural of vanadium pentoxide (V2O5) thin films were 
deposited by chemical spray pyrolysis technique (CSPT). Nd and Ce 
doped vanadium oxide films were prepared, adding Neodymium 
chloride (NdCl3) and ceric sulfate (Ce(SO4)2) of 3% in separate 
solution. These precursor solutions were used to deposit un-doped 
V2O5 and doped with Nd and Ce films on the p-type Si (111) and 
glass substrate at 250°C. The structural, optical and electrical 
properties were investigated. The X-ray diffraction study revealed a 
polycrystalline nature of the orthorhombic structure with the 
preferred orientation of (010) with nano-grains. Atomic force 
microscopy (AFM) was used to characterize the morphology of the 
films. Un-doped V2O5 and doped with 3% concentration of Nd and 
Ce films have direct allowed transition band gap. The mechanisms of 
dc-conductivity of un-doped V2O5 and doped with Nd and Ce films 
at the range 303 K to 473 K have been discussed. 
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  تأثير التطعيم بالنديميوم والسيريوم على الخصائص التركيبية والبصرية والكهربائية لأغشية
  اوكسيد الفناديوم

 3عصام محمد ابراھيم، 3افتخار محمود علي، 2رزيججمال مال الله ، 1اسماعيل خليل جاسم
  جامعة تكريت، كلية التربية، قسم الفيزياء1

  جامعة الانبار، كلية العلوم، قسم الفيزياء2
 جامعة بغداد، كلية العلوم، قسم الفيزياء3

  الخلاصة
اغشية اوكسيد الفناديوم الرقيقة ذات التركيب النانوي قد تم ترسيبھا بتقنية الرش الكيميائي، كما تم تطعيم      

بإضافة كلوريد النيديميوم وكبريتات السيريوم بنسبة  Ce والسيريوم Nd اغشية اوكسيد الفناديوم بالنيديميوم  
ذات التوجه  Nلى ارضية من السليكون نوع ورسبت الاغشية ع .في محلولين منفصلين Ceو  Ndلكل من  3%

تم اجراء الفحوصات التركيبية والبصرية  .C 250°وارضيات من الزجاج وبدرجة حرارة اساس ) 111(بلوري 
والكھربائية حيث اظھرت نتائج فحوصات الاشعة السينية ان العينات لھا تركيب متعدد التبلور ومعيني قائم 

تمتلك . كما تمت معرفة خواص السطح بإجراء فحوصات مجھر القوة الذرية. وبحجم نانوي) 010(وبدورانية 
كما نوقشت ميكانيكيه  فجوة طاقة مباشرة مسموحةCe والسيريوم Nd والمطعمة بالنيديميوم  النقية V2O5اغشية 

 .     التوصيلية المباشرة للأغشية المحضرة
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Introduction 
     One goal of today’s technology is 
the miniaturization of the electronic, 
actuating, sensing, and optical devices 
and their components; hence, 
nanotechnology is an advanced 
technology that has received a lot of 
attention from the worlds of the 
science and industry for its ability to 
make use of the unique properties of 
nanosized materials. Nanotechnology 
is capable of manipulating and 
controlling material structures at the 
nano level (a nanometer is equal to one 
millionth of a millimeter) and offering 
unprecedented functions and excellent 
material properties [1].  
Vanadium oxide is of enormous 
research interest because of its 
multivalent nature. The vanadium 
oxides exist in the V2+, V3+, V4+and 
V5+ oxidation states and form the VO, 
V2O3, VO2 and V2O5 materials [2]. 
Among these, vanadium pentoxide 
(V2O5) has drawn significant interest 
over the past decades owing to its wide 
range of applications. Its multivalency, 
layered structure, wide optical band 
gap, good chemical and thermal 
stability, excellent thermoelectric 
property, etc., are the characteristics 
that make vanadium pentoxide (V2O5) 
a promising material for applications         
in microelectronics, and for 
electrochemical and optoelectronic 
devices. It can be used as a catalyst, 
gas sensors, a window for solar cell 
and electrochromic devices as well as 
electronic and optical switches [3]. 
V2O5 is the most stable oxide and show 
semiconductor property with an energy 
gap of ~2.2 eV at room temperature, 
and displays electrochromic properties 
with varying color from blue to green 
and yellow within two seconds upon 
charging/discharging [4]. 
Vanadium pentoxide films have been 
prepared using various physical and 
chemical techniques such as, spray 
pyrolysis [5-7], electron beam 

evaporation [8], thermal evaporation 
[9], pulsed laser deposition [10], and 
sol-gel [11] methods. Different 
literature reviews were added to study 
the structural, optical and electrical 
properties of Vanadium pentoxide thin 
films. Structure and semiconducting 
properties of amorphous vanadium 
pentoxide obtained by splat 
cooling[12]. Structural and optical 
studies for V2O5 thin films. The films 
gave two-step electrochromism, yellow 
to green and then green to blue [3]. 
Amorphous and crystalline of V2O5 
thin films growled onto glass 
substrates with different concentrations 
from 0.1M to 0.5M Optical analyses 
showed  the absorption coefficient 
shifts towards lower energies [13]. 
Developed a method of a facile 
synthesis for preparing nano-sized of 
V2O5 for high-rate lithium batteries 
using  vanadyl oxalate in air [14]. In 
the present paper, un-doped vanadium 
pentoxide and doped with Nd and Ce 
thin films have been prepared by 
(CSPT) to produce large area and 
uniform coating [15]. 
 
Experimental procedure 
     Before starting the deposition, the 
solutions according to the films 
components was mixed then put it on 
the magnetic stirrer for about 15 
minutes to be sure that the mixture 
solutions are mixed properly. Prior to 
deposition, Si substrates (for studying 
the structural properties) and glass 
substrates (for studying the optical and 
electrical properties) were cleaned and 
places on the flat plate heater surface, 
which it is an electrically controlled, 
and leaves them for about 10 minutes 
so as to allow their temperature to 
reach the set temperature at (250 ± 
5)°C. After that, can start the 
deposition process within deposition 
time of 5 sec, and then stop this 
process for 10 sec. In the spray system, 
compressed and purified air was used 
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(ICDPDF No.96-101-1226), which in 
agreement with [2,17,18,19]. The 
presents a preferential orientation of 
the film was along the plane (010) at 
diffraction angle of 2  =20.36°,            
d 4.35 nm and lattice-parameter 
values of a=11.4734 Å, b=4.35809 Å 
and c=3.5533 Å. It is very close to the 
result obtained in [17,20]  
The average crystallite size was equal 
to 26.29 nm. It was estimated with the 
Debye-Scherrer formula for the (010) 
reflection as follow: 

0.94
cos θ

																																												 1  

 
where  is the wavelength of XRD 
photons which equal to 0.154 nm, is 
the full-width at half maximum 
(FWHM) and  is the Bragg diffraction 
angle in degrees. 
There was increasing in the intensity of 
peaks diffraction with doping of both 
Nd and Ce. Not to appearance of new 
phases for a new compound which 
returns to the doping material in XRD 
diagram at these ratios. That may be 
due to the low proportion of 
neodymium and cerium that were 
doped, so it is difficult to be 
discovered in the examination of 
(XRD). The structure of prepared films 
are still as polycrystalline after doping 
with Nd and Ce, in addition to that 
increase in the (010) peak intensity 
may be attributed to the formation of 
new nucleating centers due to the 
dopant atoms resulting from the 
decrease of nucleation energy barrier. 
We can observe from Fig.1, an 
increase in the FWHM and which 
consequently leads to a decrease in 

crystallite size with doping ratio for Nd 
and Ce, as a comparison of pure 
vanadium pentoxide films according to 
Eq. (1), where the relation between the 
crystallite size and FWHM is reverse. 
Decreasing in the crystallite size after 
doping is evidence on the improvement 
of the nano crystal, which indicates 
that the deposited atoms of these films 
going towards nanostructure. There 
was a decrease in the D value when 
V2O5 films doped with Nd and Ce 
dopant which indicate to nanoparticles 
formed which it was resulting from the 
doping process. 
Three-dimensional AFM images and 
the chart of grain density distribution 
for V2O5:Nd and Ce are shown in 
Fig.2. AFM images were taken in 
order to further observe microstructure 
and confirm the XRD result. The 
average diameter, average roughness 
and root mean square roughness (r.m.s) 
are deduced from AFM images. The 
finer morphology and roughness of the 
films can be clearly seen. We can 
conclude that the grain size is uniform. 
The photography of AFM reveals a 
uniform growth of the film. The AFM 
images displayed all samples are 
granular structure. 
Morphology parameters include 
average diameter, average roughness, 
average r.m.s roughness and peak – 
peak for samples are tabulated as 
shown in Table 1. AFM analysis for 
un-doped V2O5 film showed there is 
much bigger quasi bar-shape grains 
formed in the film, also it has a good 
uniformity revealing a uniform growth 
of the films. 
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from incomplete oxidation of the films, 
thus electrical conductivity increases 
with concentration of oxygen 
vacancies [27].  
The D.C. activation energies calculated 
from the plot of ln(σd.c) versus 1000/ T, 
then founded the slope and multiple it 
by kβ as follow: 
Ea = kβ . slope                                   (4) 
 
Two stages of conductivity throughout 
the heating temperature range are 
noted, first activation energy (Ea1) 
occurs at low temperatures near Fermi 
level within the range (303-383) K, 
while the second activation energy 
(Ea2) occurs at high temperatures 
within localized states at the range 
(383-473) K. This result is in 
agreement with [28]. 
Electrical conductivity was increased 
with Nd and Ce doping concentration 
which resulting from the increase in 
the concentration of charge carriers 
because of the presence of donor levels 
in the energy gap. While there was 
decreasing in activation energy with 
doping concentration at low 
temperature region. This drop in 
activation energy may be increased in 
oxygen vacancies created upon Nd and 
Ce doping into the V2O5 lattice. The 
low activation energy may be due to 
the large percentage of highly 
disordered interfaces. Doping likely 
increases this disorder, as well as 
creating more oxygen vacancies for 
material transport during material 
synthesis [29]. Higher activation 
energy at higher temperatures, this is 
likely due to the segregation of Nd and 
Ce out of the V2O5 lattice structure and 
into the grain boundaries. 

The variation of carriers concentration 
(nH) and Hall mobility (μH) of un-
doped V2O5 and doped with Nd and Ce 
at 3% doping concentration thin films 
are shown in Table 3. 
Hall measurements show that all these 
films have a negative Hall coefficient 
(n-type charge carriers), this result was 
agreement with [5,30]. This is 
attributed to following two reasons: 

[31] 
i) The number of electrons excited 
above the conduction band mobility 
edge is larger than the number of holes 
excited below the valance band 
mobility edge. 
ii)  The life time of free electrons 
excited from negative defect state is 
higher than the life time of free holes 
excited from positive defect state. 
It's clear from Table 3 that the carrier 
concentration increases with dopant 
ratio of both Nd and Ce while there 
was decreasing in carrier mobility (μH) 
with Nd and Ce dopant concentration 
and the doping process did not affect 
on the type of the charge carriers. The 
increasing in carrier density with Nd 
and Ce doping leads to decrease in the 
resistivity of doped V2O5 thin films. It 
is due to decrease the disorder of the 
crystal lattice, which causes decreases 
in phonon scattering and ionized 
impurity scattering and results in a 
decrease in mobility [32]. In other 
words, the reduction in carrier mobility 
with Nd and Ce doping ratio because 
of decreasing in crystallite size, as 
stated in the measurements of X-ray, 
which in turn leads to an increase in 
grain boundary and will thus 
decreasing mobility [33]. 
 

 
 
Table 3: Hall measurements results of V2O5 thin films at 3% dopant ratio of Nd and Ce. 
Sample σRT (Ω-1.cm-1) RH (cm3/coul) nH ×1015 (cm-3) type μH (cm2/V.sec) 

0% 0.1042 -7500 0.833 n 781.25 

3% Nd 0.1623 -3750 1.667 n 608.77 

3% Ce 0.1325 -3500 1.786 n 463.83 
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Conclusions  
     XRD measurement showed that the 
films to be polycrystalline with 
orthorhombic phase and with preferred 
orientation of (010). Analysis of the 
absorption curves revealed allowed 
direct transition with optical energy 
gap 2.34eV. Also, the absorption edge 
shifts towards higher energies. The 
absorption edge showed a blue shift, 
and the optical band gap of the thin 
films revealed allowed direct transition 
with optical energy gap 2.2eV. Optical 
energy gap decreased with doping of 
both Nd and Ce and with same ratio. 
The optical transmission of the films 
increased with doping concentration, 
which provides a satisfactory optical 
window for optoelectronic 
applications. Carrier concentration 
increases with dopant ratio of both Nd 
and Ce while there was decreasing in 
carrier mobility (μH) with Nd and Ce 
dopant concentration and the doping 
process did not affect on the type of 
the charge carriers. 
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