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Abstract

The nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and '°0O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for *He nucleus while
the results for °C and '°O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square radii usingWoods-Saxon
potentials how overestimation in comparison with experimental data
on contrary to the results of harmonic-oscillator potential.
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Introduction

The radial distributions and sizes of
nuclear matter and charges are basic
properties of nuclei. They are
important to test the validity of the
nuclear single-particle wave functions
used especially in density folding
models [1]. The harmonic-oscillator
(HO) potential is not accurate to
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describe the nuclear central confining
potential  because the potential
continues to give a contribution even
for much larger r (distance from the
center of nucleus) and does not
become zero, besides the radial wave
functions obtained from HO have a
Gaussian fall-off behavior at large r
which does not reproduce the correct
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exponential tail. In this field, Elton and
Swift [2] firstly reproduced single-
particle radial wave functions in a
parameterized single-particle local
Woods-Saxon (WS) potential and
adjusted the parameters so as to fit the
shape of the wave functions to elastic
electron scattering data and the eigen-
energies to the proton separation
energies in the 1p and 2s — 1d shell
nuclei. Gibson et al. [3] studied the
ground state of the “He nucleus using
the single-particle phenomenological
model.  Wave  functions  were
regenerated from a WS potential
whose parameters are chosen to
regenerate  the  correct neutron
separation  energy. The  proton
separation  energy and electron
scattering form factors were then
calculated. Gamba et al. [4] calculated
the parameters of a WS potential well
for ten p-shell nuclei by fitting the
electron scattering form factors and
single-particle separation energies.
Brown et al. [5] described a new
method for calculating nuclear charge
and matter distributions which is
complementary to the Hartree-Fock
method taking into account shell model
configuration mixing but it is only
semi-self-consistent ~ because  the
potential was allowed to vary linearly
with the density. The method was
applied to the core nuclei '°O and *’Ca.
Lojewski et al. [6] used realistic single-
particle WS potential to evaluate the
mean-square charge radii for even-
even nuclei. Lojewski and Dudek [7]
evaluated the proton and neutron
separation energies and mean square
charge radii within the WS plus BCS
model for even-even nuclei with
40 < A < 256. In [8] some properties
of the solutions to the Dirac equations
with WS potential were studied, the
results obtained for spherical nuclei
were compared to those of the
relativistic mean field theory. In [9] the
single-particle energies and wave
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functions of an axially two-center WS
potential were computed. The spin-
orbit interaction was included in the
Hamiltonian. In [10] the WS potential
has been considered to compute the
eigenvalues by using Numerov method
for a Sturm-Liouville problem. In [11]
the Schrédinger equation has been
solved by using the Pekeris
approximation, for the nuclear
deformed WS potential within the
framework of the asymptotic iteration
method. The energy levels have been
worked out and the corresponding
normalized eigen functions have been
obtained in terms of hypergeometric
function.

The aim of the present work is to
calculate ground state matter, proton,
charge densities, and neutron root
mean square (rms) radii, charge
density distributions (CDD), elastic
charge form factors for stable 4He, 12C,
and '°0 nuclei using the radial wave
functions of WS and HO potentials.

Theoretical formulations

The Schrodinger equation for the
single-particle radial wave function
can be written as [5]:

(B - v =0 4+ ) Ry = 0 ()
where u = m(A — 1)/A is the reduced
mass of the core (A — 1) and single
nucleon, m is the nucleon mass, A is
the atomic mass, &,; is the single
nucleon separation energy, Ry;;(r)is
the radial eigenfunction of WS
potential, n,l, and j are the principal,
orbital angular, and total quantum
numbers.

For the local potential v(r), the WS
shape is used in the compact form
shown below [2,4]:

V(1) = Veene (1) + Vs0.(r) + v:(r) (2)

where

Veent (1) = m (3)
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represents the central part of v(r), U, potential, the a,yis the diffuseness and
is the strength or depth of central R=1,(A—1DY3 is the radius
parameter.

1-Rso.
) = 2( h )ZUS.O_d 1 a ”)—2( h )ZUS.O_ e( as.o. ) (0.6 (4
o\ = myc) r dr( (1—Rs-o-)> 7= myc/ T (1_Rs.o.) z{.0) (V)
1+ e\ Gso <1 + e\ aso. )
2 A
where( hc ) — 1.99901 fm? and G are the angular mpmentum and
' Mmyc? the spin operators respectively.
with  mgc? = 139.5669 MeV Finally, in Eq. (2) v.(r) indicates
and hc =197.32858MeV. fm?. the Coulomb potential generated by a
homogeneous charged sphere and can
1 . 1 be written as [12]:
—=(+1) forj=Il—=
oA 2 2
(l.6) = 1 1 _
, ve(r) =
=1 forj=1+= o2
2 2 Z-1= if r>R
, (5
Eq. (4) represents the spin-orbit part of Z-1)e* [3 — ﬁ] if r <R ©)
2R R?

v(r), m, is the pion mass,U, is the
strength or depth of spin-orbit

potential, ag,is the diffuseness of for protons and wvc(r) =0 for

) neutrons, withe? = 1.44 MeV. fm.
spin-orbit part, R;, =150 (A — 1)3 i§ Therefore, Eq. (2) can be written as:
the radius parameter of spin-orbit and!

T-Rso.
~Uj, h\21Usp. e( 2s.0. PR
v(r) = — = (=) 2 20 (1.8) + ve(r) (6)
(1ee0) e e, 552))

The point density distributions of the distribution of the point proton
neutrons, protons, and matter can be density in Eq. (7)as follows [14]:
written respectively as [13]: pen(r) = | Pp(T)ppr(r —1rHdr’  (8)

1 2
Pn,p or m() = ﬁanj erlllz{ orm |Rnlj(r)| .
(7) If p,(¥)is taken to have a Gaussian
where X,Tllllpj or mepresents the number form, then .
of neutrons, protons, or nucleons in the ) = 1 (anr> 9
nlj-subshell. It is worth mentioning PpriI) = (Vrap,)’ € ©)
that the summation in Eq. (7) spans all
occupied orbits. where a,, = 0.65 fm. Such value of
In order to compare the calculated a,y reproduces  the  experimental

point proton density distributions with charge rms radius of the proton,

the experimental densities, the finite NPy

proton size is required to be (r2)’ = (g) apr = 0.8 fm.
included.  The  charge  density The rms radii of neutron, proton,
distribution p.,(r)(CDD) is obtained charge and matter can  be
by folding the proton density p,, into directly deduced from their density
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distributions [14] as follows:

4 0
(r? ):L,/;_ch,m = 77T fo Pnp,chm (mr2dr  (10)

where X in Eq. (10) denotes N(number
of neutrons), Z (atomic number which
is the same for proton and charge) and
A, respectively.

In the first Born approximation the
elastic neutron, proton, charge and

matter form factors are Fourier
transforms of their corresponding
density distributions [14]:

Fn,p,ch,m(q) =

&y

4 0 .
q_f( fo pn,p,ch,m(r) sm(qr) rdr

where X takes the same definition in
Eq. (10).
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Results and discussion

The nuclear shell model is used to
calculate CDDs, form factors and
corresponding proton, charge, neutron,
and matter rms radii for 4He, IZC, and
%0 nuclei. The WS potential is used to
regenerate the radial wave functions
and experimental single nucleon
(proton/neutron) separation energies.
The WS  parameters Uy, Us, ,a,,
s 0,70, Ts0., and R are adjusted so as
to reproduce the experimental single

nucleon  separation energies in
different subshells for nuclei under
study.

For 4He, 12C, and '°0 nnuclei, the
parameters chosen for WS potential are
shown in Table 1. The results for the
calculated single nucleon separation
energies are shown in Table 2.

Table 1: The WS parameters Uy, Uy, , @g, @570, T's 0, and R, for “He, *C, and *°O nuclei.

He | nl; | Up(MeV) | Uso(MeV) | ag(fm) | a5 (fm) | ro(fm) | 150.(fm) | Re(fm)

n | 1sy, 56.70 15.0 0.01 0.01 1.350 1.350 0.0

p 154/, 56.53 15.0 0.01 0.01 1.333 1.333 1.333

12C

n | 1sy, 59.76 15.0 0.527 0.527 1.236 1.236 0.0
1ps3/2 59.10 15.0 0.527 0.527 1.236 1.236 0.0

p 1sy/, 60.05 15.0 0.518 0.518 1.230 1.230 1.23
1ps3/2 59.21 15.0 0.518 0.518 1.230 1.230 1.23

160

n 1s1, | 51.08268 15.0 0.5 0.5 1.375 1.375 0.0
1ps/; | 50.18035 15.0 0.5 0.5 1.375 1.375 0.0
1py, | 52.43502 15.0 0.5 0.5 1.375 1.375 0.0

p 1s1/5 | 50.66585 15.0 0.5 0.5 1.375 1.375 1.375
1ps/p | 50.35321 15.0 0.5 0.5 1.375 1.375 1.375
1py/, | 5248221 15.0 0.5 0.5 1.375 1.375 1.375
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Table 2: The calculated (E4;) and experimental (E,,; ) single nucleon (proton/neutron)

separation energies for different subshells for “He, *C, and *°0 nuclei
7

He nl; Ecqi = Eexp (MeV) [15]

n 1s1/, 20.5776

p 1s1/, 19.8139

IZC

n 1s1/2 34.04
1ps3/, 18.72

p 1sy/, 30.9
1ps3/; 15.75

160

n 151/, 34.03
1p3/2 21.81
1p1s2 15.65

p 151/, 29.81
1p3/2 18.44
1p1s2 12.11

The results of the calculated charge,
matter, proton, and neutron rms radii
for *He, 'C, and 'O nuclei are
presented in Table 3. For *He nucleus,
the results in WS potential for the
charge and matter rms radii showed
overestimation in comparison with
experimental data on contrary to the
results of HO potential which can
reproduce such experimental data.
Regarding the calculated proton and
neutron rms radii in both potentials,
there is appreciable variation between
the results of both potentials.
Unfortunately, there are no available
experimental data to compare with. For
2c nucleus, the calculations in both
WS and HO potentials for the
calculated charge and matter rms radii
showed very good agreement with
experimental data. For the calculated
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proton rms radii, the results of both
potentials are almost equal on contrary
to the results of the calculated neutron
rms radii  which showed large
deviation for both potentials. In '°O
nucleus, the calculated charge rms
radius in WS and HO potentials are
both in excellent agreement with
experimental data, while the results for
the calculated matter rms radii showed
slight overestimation in WS potential
in comparison with experimental data
on contrary to the results of HO
potential which agree with the
experimental data. The calculated
proton rms radii in WS and HO
potential are also almost the same.
Appreciable deviation is observed for
the calculated neutron rms radii in
both potentials.
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Table 3: The calculated charge (r?) ;"
rms radii in Fermi’s (fm) units with corresponding available experimental data.

matter (r? ),1,{ 2

, proton (r
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2)1,1,/2, and neutron (1'2),11/2

nucleus Calculated | pxp. (rZ)i}/l 2 Calculated Exp. Calculated Calculated
(r2)u? [16] (r2)? (2’ (r2)/? (r2)/?
[17]

“He WS: 1.885 1.676(8) WS: 1.709 1.57(4) WS:1.714 WS: 1.704
HO: 1.676 HO: 1.570 HO: 1.475 HO: 1.659

2c WS: 2.464 | 2.464(12) WS:2326 | 231(2) | WS:2336 | WS:2316
HO: 2.464 HO:2.310 HO: 2.332 HO: 2.287

e WS: 2.737 2.737(8) WS: 2.606 2.54(2) WS: 2.623 WS: 2.589
HO: 2.737 HO: 2.54 HO: 2.619 HO: 2.458

The calculated charge  density result of WS potential predicts the

distributions are depicted in Fig. 1 for
*He (a), '*C (b), and '°O (c) nuclei in
WS (solid curve) and HO (dashed
curve) potentials. For *He nucleus, it is
clear from Fig. 1 (a) that the result
from WS is better than the result from
HO potential which showed a large
deviation from experimental data at
central region. In Fig. 1 (b), the
calculated CDDs for '“C nucleus in
both WS and HO potentials are
depicted. It is clear that the results of
WS and HO potentials are almost the
same in central region with slight
deviation upwards of the WS potential
from experimental data. Finally, the
results of the calculated CDDs in WS
and HO potentials are shown in
Fig.1(c). It is obvious that the result of
HO potential is better than WS
potential in central region on contrary
to result of HO potential which showed
an appreciable underestimation in the
central region with behavior going well
with experimental data in central
region.

The calculated charge form factors are
illustrated in Fig.2 for “He (a), '*C (b),
and '°O (c) nuclei in WS (solid curve)
and HO (dashed curve) potentials. For
*He nucleus (Fig. 2(a)), it is clear that
the result of WS is better than the
result of HO potential which
completely failed to reproduce the

first  diffraction  minimum  in
comparison with experimental data.
For '“C nucleus (Fig.2 (a)), the
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existence of second diffraction
minimum. The result for HO potential
is slightly better than the result of WS
potential for all g regions. Finally, in
Fig. 2(c), the charge form factor for
"0 nucleus is illustrated. The results in
HO potential failed to reproduce the
second diffraction minimum while the
result of WS potential is very good at
low and medium q regions. At high g
region, the result for WS potential
slightly overestimates the position of
second diffraction minimum by
roughly 0.1 fm™!, and underestimates
the calculated charge form factors
downwards at second diffraction
minimum and beyond.

Conclusions

The nuclear charge  density
distributions (CDD), form factors, and
corresponding proton, charge, neutron,
and matter rms radii besides single
nucleon binding energies for stable
*He, '*C, and '°O are calculated in both
Woods-Saxon (WS) and harmonic-
oscillator (HO) potentials. The results
showed an overestimation in the
calculated charge, matter, proton, and
neutron rms radii in WS potential for
*He nucleus in comparison with
available  experimental data on
contrary to the results of HO potential
which easily reproduce the available
experimental data. For '>C nucleus, the
charge, matter, and proton rms radii
are almost well generated in both WS
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and HO potential but with appreciable
deviation for neutron rms radii for
both potentials. For '°O nucleus, the
results of the calculated charge and
proton rms radii are roughly the same.
The deviation appreciably noticed in
matter and neutron rms radii for both
potentials where the result for HO
potential is better than the result for
WS potential in comparison both with
available experimental data. In general,
there is an overestimation in the
calculated rms radii in WS potential.
For the calculated CDDs, the results
for WS potential in “He nucleus are
much better than results for HO
potential. For '°0O nucleus, the
behaviors in both potentials are the
same but in HO potential is better. For

Vol.14, No.30, PP. 42-50

12C nucleus, the results in HO potential
are much better than results of WS
potential. Regarding the calculated
charge form factors, for “He nucleus,
the results in WS potential is much

better in HO potential which
completely failed to predict the
existence  the  first  diffraction

minimum. For *C nucleus, the results
for both potentials are the same at all q
regions with the difference that there is
a second diffraction minimum
predicted by WS potential. Finally, for
150 nucleus, the results for WS
potential are much better in
comparison with experimental data
than the results for HO potential which
completely failed to reproduce the
second diffraction minimum.
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Fig.1: CDDs for “He (a), *C (b), and O (c) obtained by WS (solid curve) and HO (dashed
curve) potentials. The experimental data are denoted by filled dotted circles and taken

from[16].
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Fig. 2: Charge form factorsfor‘He (a), ?C (b) and '°O (c) calculated by WS (solid curve)
and HO (dashed curve) potentials. The experimental data are denoted by filled dotted
circles and taken from [18, 19] for “He and [20] for both **C and *°O nuclei.
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