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Abstract Key words 
     In this work we reported the synchronization delay in 
semiconductor laser (SL) networks. The unidirectional 
configurations between successive oscillators and the correlation 
between them are achieved. The coupling strength is a control 
parameter so when we increase coupling strength the dynamic of the 
system has been change. In addition the time required to synchronize 
network components (delay of synchronization) has been studied as 
well. The synchronization delay has been increased by mean of 
increasing the number of oscillators. Finally, explanation of the time 
required to synchronize oscillators in the network at different 
coupling strengths.  
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 شبة الموصل للشبكات الكھروبصريةزمن تأخير تزامن الشواش في ليزر 

سؤدد سلمان احمد اطياف عدنان فرحان، قيس النعيمي،  

 قسم الفيزياء، كلية العلوم، جامعة بغداد، بغداد، العراق 

    الخلاصة 
تأخير التزامن في ليزر شبة الموصل للشبكات الكھروبصرية. الترتيب  في ھذا العمل قمنا بتوضيح زمن      

بين كل متذبذبين متتاليين والتزامن فيما بينھم تم الحصول علية. حيث ان قوة الترابط ھي المتغير  هالاحادي الاتجا
للتزامن  ملزمن اللازالمتحكم في التزامن. عند زيادة قوة الترابط فأن حركة النظام سوف تتغير بالاضافة الى ذلك ا
لتزامن المذبذبات في  مفي الشبكات ( زمن التأخير في التزامن ) ايضا تم دراستة واخيرا، تم توضيح الزمن اللاز

  الشبكات لقوى ربط مختلفة. حيث نلاحظ ان زمن التأخير في التزامن يزداد بزيادة عدد المذبذبات.
  

Introduction 
   The analysis of synchronization 
phenomena in the evolution of 
dynamical systems started in 17th 
century with the finding of Huygens 
that weakly coupled pendulum clocks 
(hanging at the same beam) become 
synchronized in phase [1]. 
Synchronization of chaos [2,3] is an 
adjustment of rhythms of oscillating 
objects due to their weak interaction. 
Synchronization of oscillators is a 
universal and ubiquitous phenomenon 
in nature [4]. In general, more 
complicated synchronization may be 
observed including cluster and  group 

synchronization [5,6]. Many aspects of 
delay dynamics have been observed 
and studied first in laser systems [7,8]. 
F. Sorrentino and E. Ott 2007[9] 
considered two groups of nodes 
governed by different local dynamics. 
Jhon F. Martinez Avila and J. R. Rios 
Leite 2009 [10] explain time delays in 
the synchronization of chaotic coupled 
lasers with feedback. Thomas Dahms 
et al. 2012 study Cluster and group 
synchronization in delay-coupled 
networks they derive the master 
stability function and show the 
restrictions that arise upon the 
topology and  investigate the 
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symmetries that group and cluster 
synchronization impose on the master 
stability function. They also 
demonstrate this symmetry for 
networks of delay coupled lasers and 
Multiple coupling matrices are 
introduced [11].  
  The unidirectional synchronization, 
will be investigated in this paper and 
correlation between successive 
oscillators was studied. Also we 
presented here the relation between 
time required to synchronize and 
number of oscillators for a single 
coupling strength and for different 
coupling strength  k. 
    
The dynamical model 
   The population inversion for 
semiconductor lasers (SLs) is replaced 
by the carrier density(N) produced by 
electron-hole recombination. The 
carrier density and the photon number 
(which is equivalent to the absolute 
square of the field amplitude) are 
frequently used as the variables of the 
rate equations for SLs. However, for 
the general descriptions of the 
dynamics in SLs, we must employ the 
complex amplitude of the field (the 
amplitude and the phase of the field) 
instead of the photon number. 
   The carrier density N  and dynamics 
of the photon density S is described by 
the usual single mode SL rate 
equations appropriately modified in 
order to include the ac-coupled 
optoelectronic feedback [12] [13]. 
 
	 	 	 	 	 	 	               (1) 
 
	 	

		 	 	
	 	 	(2) 

 
	 	 	 	 	 		                            (3) 

 
   where g is the differential gain, N t is 
the carrier density at transparency,  γ o 
is the photon damping, Io is the bias 
current,		 	 	  ≡ AI/(1+ ́ 	I) is the 

feedback amplifier function, e is the 
electron charge, V is the active layer 
volume, γ c is the population relaxation 
rate, γ f is the cutoff frequency of the 
high-pass filter, where I  is the high-
pass-filtered feedback current (before 
the nonlinear amplifier) and  is a 
coefficient proportional to the 
photodetector responsivity. 
It is useful to rewrite equations 1,2,3 in 
dimensionless form and that for 
numerical and analytical purposes. So, 
we introduce the new variables                                

	 	 ,	 	 		 	 	 , 

	 	 	 	                                                   

and the time scale ́ = t. Then the 
rate equations can be written as:  
 	 	 	 	1                            (4)      
                                                                                      

	 	 	 	 	 	 	 	
	 																																																						 (5)  
  

	 	 	 	 	 																								 6    
 
where (i=1,2,3….37),	 	 	 ≡
	 	

	 	 	
, 	 	 	 	 /

		 	 	 	is the bias current, 
( 	 )    is the solitary 

laser threshold current, 	 	,

	 	is the bandwidth at resonant 

frequency ωo, which is the inverse of 
the familiar quality factor Q , 
⁄ 	 is the feedback 

strength,	 	 	 	́ ⁄ 	 is the 
saturation coefficient. Let	 	 	
	 , the previous equations can be 
written as:                                                                             
	 	 	 – 	1 	                             (7) 

	–	 	 	 	 	 	(8) 

	 	 	 																																		 9  
 
to be easily handled when processed 
using Berkeley Madonna (BM) 
Software. These equations representing 
the nonlinear dynamical system which 
produced homoclinic chaos (HC) in SL 
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