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Abstract Key words 
     The investigation of the effect of tempering on thermal analysis of 
Al-Ti-Si alloy and its composites with MgO and SiC particles was 
performed. Thermal analysis was performed before and after 
tempering by DSC scan. Optical microscopy was used to identify the 
phases and precipitations that may be formed in base alloy and 
composites. X-ray diffraction test indicated that the Al3Ti is the main 
phase in Al-Ti-Si alloy in addition to form Al5Ti7Si12 phase. Some 
chemical reactions can be occurred between reinforcements and 
matrix such as MgO.Al2O3 in Al-Ti/MgO, and Al4C3 and Al(OH)3 in 
Al-Ti/SiC composite. X-ray florescence technique is used to 
investigate the chemical composition of the fabricated specimens. 
Heat treatment (Tempering) changes the microstructure of base alloy 
and its composites which was assessed by DSC scan. Generally, 
three main peaks appeared in DSC represented by GP zone, S phase 
(precipitations) and dissolution of phases or precipitations.  After 
tempering, composite with SiC particles showed better results than 
base alloy and composite with MgO. Since the optical microscopy 
revealed reforming the stable phase Al3Ti with evaporation some 
gases from composite. DSC analysis showed the stability of 
composite with SiC was up to 270oC. 

DSC, Al-Ti-Si alloy, 
Composite, SiC, 
MgO, Al3Ti phase, 
Al5Ti7Si12. 
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سليكون والمواد المتراكبة  –تيتانيوم  –تأثير المراجعة على التحلل الحراري لسبيكة المنيوم 

  العائدة لھا

  رنــا عفيف مجيد، وفــاء مھدي صالح، بان فرحان داود

  الجامعة التكنولوجية ،قسم ھندسة المواد

  الخلاصة
سليكون مع مواده  –تيتانيوم  –لسبيكة المنيوم  لقد تم الكشف عن تأثير المراجعة على التحليل الحراري     

من خلال فحص المسعر التفاضلي % 1المتراكبة المدعمة باوكسيد المغنيسيوم وكاربيد السليكون بنسبة وزنية 
س والمواد المتكونة في السبيكة الاسااجري فحص البنية بالمجھر البصري لتشخيص الاطوار . الحراري

بالاضافة الى تكوين  Al3Tiالمتراكبة المدعمة وقد اثبت فحص الحيود بالاشعة السينية تكون الطور الرئيسي 
و  Al4C3و  MgO.Al2O3بالاضافة الى اطور اخرى تتكون ضمن المواد المتراكبة مثل  Al5Ti7Si12الطور 

Al(OH)3 الحرارية تغير من تفاعلات التبلور والانصھار الظاھرة في فحص التحلل  ان المعاملة. واطوار اخرى
ان قمم التبلور الرئيسية الظاھرة في فحص التحلل الحراري ھي . الحراري باستخدام المسعر الماسح التفاضلي

ائق كاربيد دة المتراكبة المدعمة بدقان الما. وقمة الاطوار غير المتماسكة Sوقمة الطور البيني  GPظھور طبقة 
 .درجة مئوية 270السليكون تظھر من خلال الفحص بالمسعر الماسح التفاضلي استقراراً حرارياً واظحاً الى حد 
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Introduction 
     Composites are materials in which 
two phases are combined, usually with 
strong interfaces between them. The 
current and potential applications of 
aluminum based composites are 
concentrated on three specific areas: 
the automotive industry, the aerospace 
sector and the leisure market. 
However, interest is also growing in 
the field of mechanical applications 
(mostly for wear resistant or high 
precision applications) and in the field 
of electrical and electronic applications 
[1, 2]. 
     Differential scanning calorimetry 
(DSC) and isothermal calorimetry have 
been applied extensively to the 
analysis of light metals, especially Al 
based alloys. Isothermal calorimetry 
and differential scanning calorimetry 
are used for analysis of solid state 
reactions, such as precipitation, 
homogenization, devitrivication, 
recrystallisation; and solid–liquid 
reactions. 
     Some authors highlighted 
fabrication and studying properties of 
Al-Ti alloy [3-7] and there are many 
researches focus thermal analysis of 
aluminum alloys and aluminum matrix 
composites [8-13]. 
     This work aims to study the effect 
of tempering on Al-Ti-Si alloy and 
reinforced by MgO and SiC through 
optical microscopy and differential 
scanning calorimetry to identify the 
interaction between reinforcements and 
matrix.  
  
Experimental procedure 
Preparation of specimens 
     Al wires and Ti powder was used to 
fabricate the base alloy and its 
composites with 1 wt% of MgO or SiC 
by stir casting technique. Al wires and 
other powders were used, where the 
particle size of Ti was 165 μm, while 
was 53 and 20 μm for MgO and SiC 
respectively. For the production of 

composite specimens, matrix material 
Al was put in the crucible and the 
melting process was started and 
continued until the temperature of the 
liquid matrix reached 700°C. Stirring 
apparatus was immersed in the liquid 
metal and stirring was started. The 
appropriate amount of Ti, Si then MgO 
and SiC with 1 wt.% was added in the 
liquid metal by a funnel during the 
stirring process. After the addition of 
reinforcement to liquid matrix, the 
mixture was stirred for about 4 min at 
500 rpm in order to allow 
homogeneous distribution of MgO or 
SiC particles in the mixture. When 
stirring was completed, the crucible 
was taken out of the furnace, the 
molten liquid was poured in to steel 
containers of 20 mm diameter and 170 
mm height and was allowed to cool 
down to room temperature. The 
chemical composition of base alloy is 
shown in Table 1 which obtained by 
SpectroMAX technique (AMETEK).  
     The specimens were cut into 
cylindrical shapes for characterization 
and thermal conductivity test with 
dimensions of 20 mm diameter and 4 
mm high. Grinding and polishing was 
done with emery papers 220, 400, 500, 
800, and 1000 mesh grit and then 
rinsed with acetone. The specimens 
were etched with Killers solution (2 ml 
HF +3 ml HCl + 5 ml HNO3 + 190 ml 
H2O) as etchant for 10-30 sec for 
optical examination. 
 
X-Ray diffraction  
     XRD was carried out by X-Ray 
Diffractometer, Model: XRD-6000 
with Cu-Kά as target at voltage= 40 
(kV) and current= 30 (mA). While 
EDS was done by Scanning Electron 
Microscope (SEM), Model: Tescan 
VEGA 3 SB with Electron Gun: 
Tungsten Heated Filament and Voltage 
200 (V) to 30 (kV). 
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and/or “petal-like” in appearance. 
Petal-like Al3Ti particles in α-Al solid 
solution are shown in Fig. 2 of base 
alloy are produce according to 
following reaction: 
Al(l)  + Al3Ti(crys)  → α-Al (Alloy solid 
solution)                                           (1) 
 
     Al3Ti crystals act as nuclei for 
grains to grow. Multiple nucleations of 
averagely eight sites may occur on 
each particle. The structure 
examination also shows a flake-like 
structure which is due to Al5Ti7Si12 
phase [8-13]. 
     The addition of reinforcements 
(MgO and SiC) seems to proceed by 
diffusion in liquid state as shown in 
Figs. 2(b and c). The reinforcement 
material MgO was generally 
distributed homogeneously as shown 
in Fig.2b. This situation can be 
clarified by precipitation of 
reinforcement during the cooling of 
liquid mixture due to its higher specific 
gravity than that of the matrix material 
Al [14]. There is a lower chance or 
lower amount of Al3Ti phase form in 
presence of MgO in Al-Ti alloy 
because most of Al are react with 
oxygen and converting to Al2O3 
During the casting. At the same time, 
the aluminum content oxidizes and 
then reacts with MgO to form a non 
stoichiometric reaction: 
MgO(s) +Al2O3(s) → MgO.Al2O3(s)      
(∆G=-25.365 kJ/mol)                       (2)  
  
     Non-homogenization of SiC 
particles in Al matrix can be observed 
in the microstructure of 1 wt.% SiC 
reinforced aluminum matrix composite 
as shown in Fig.2c. Some places in Al 
matrix can be identified without SiC 
reinforcing particles. Porosities were 
observed in all microstructures. This 
was because when SiC particles were 
added in the melt during casting, it 
introduced air in the melt entrapped 
between the particles. 

     During the fabrication of Al/SiC 
composite the major problem is the 
formation of the Al4C3 phase at the 
Al/SiC interface as shown in Fig. 2c, 
because the SiC is thermodynamically 
unstable in the Al melt. This brittle 
reactant Al4C3 forms agglomerates at 
the interface leading to degradation of 
the composite strength, modulus and 
corrosion [15, 16]. When processing 
Al/SiC composites with the metal in 
molten state is that liquid aluminum 
tends to attack SiC according to the 
following reaction: 
4Al(l) + 3SiC(s)  ↔ Al4C3(s)  + 3Si(in l Al)      
                                                        (3) 
 
     This reaction is thermodynamically 
possible because that the standard free 
energy change for this reaction is 
negative, and Al4C3 and Si are the two 
major interfacial reaction products. 
The migration of carbon atoms 
(exchange of atoms) is involved in a 
chemical reaction, leading to 
wettability and bonding improvement. 
     The Al4C3 compound has 
deleterious effects within the 
composite because, firstly, as a brittle 
phase degrades the mechanical 
properties, and secondly, it reacts with 
water or with moisture in the ambient, 
debilitating even more the composite, 
according to the following reactions: 
Al4C3(s) + 18H2O(l) → 4Al(OH)3(s) + 
3CO2(g) + 12H2(g)  (∆G=-1746 kJ/mol)                
                                                        (4) 
 
     Some SiC particles in the 
composites might oxidize during 
heating, and, then, SiO2 film forms 
around the particle surface [17].  
     Fig.3 shows the microstructure 
examination of Al-Ti alloy and its 
composites with 1% MgO and 1%SiC 
respectively after tempering. From 
these images, can be seen that Al3Ti 
phase is growing up and breaking up 
into smaller parts. This process is 
continuing with increasing of the 
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