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Abstract Key words 
     This research presents a new algorithm for classification the 
shadow and water bodies for high-resolution satellite images (4-
meter) of Baghdad city, have been modulated the equations of the 
color space components C1-C2-C3. Have been using the color space 
component C3 (blue) for discriminating the shadow, and has been 
used C1 (red) to detect the water bodies (river). The new technique 
was successfully tested on many images of the Google earth and 
Ikonos. Experimental results show that this algorithm effective to 
detect all the types of the shadows with color, and also detects the 
water bodies in another color. The benefit of this new technique to 
discriminate between the shadows and water in fast Matlab program. 
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ة ـور الاقمار الصناعيـة لصـطحات المائيـل و المسـللـ تمييز بين الظ ـةقنيات الرقميـتاليف يكـت

  ةـة الدقـعالي

  2أنعام كاظم ھادي، 1علاء سعود مھدي
  جامعة بغداد ، العلومكلية ، قسم التحسس النائي1
  وزارة العلوم والتكنولوجيا   ،دائرة بحوث المواد2

  الخلاصة 
ة ـعالياله ـور الاقمار الصناعيـل والمياه لصـق الظـنيف مناطـدة لتصـة جديـحث يعرض خوارزميـذا البھ     
ة ـمركباسـتخدمت . C1-C2-C3وني ـمركبات الفضاء الللالمعادلات وقـد تم تعـديل ، لمدينة بغداد) متر-4( ةـالدق

 اللونـي الفضاء اسـتخدمت حزمة ل،ـة الظـز منطقـلتميي) الزرقاء( C3ون ـمحددة من ل حزمة اللونـي الفضاء
ديدة تم ـة الجـة الرقميـالتقني ذهـوھ )،النھر(المسـطحات المائيـه ز ـلتميي) الحمراء( C1ون ـددة من لـة محــفرق

 ان ھـذهه ـائج العمليـرت النتـوقد اظھ Ikonosو Google earth صور من  ديدـاح على العـاختبارھا بنج
والفائـدة . في لون آخرالماء  شف عنـو أيضا بالك ،للونع الظلال مع ااوـنأكل  عنف ـلكشلة ـة فعالـالخوارزمي

  .Matlabة الـ ـريع بلغـوالمياه  في برنامج س لتمييز بين الظلالالجديدة ھو ل هـذه التقنيـھ من
  

Introduction 
     The shadows are physical 
phenomena observed in most natural 
scenes [1]. Shadows in images lead to 
undesirable problems on image 
analysis. Moreover, shadows imply a 
geometric relationship between 
objects, light source, and viewpoint. 
That is why much attention has been 

paid to the area of shadow detection 
and removal over the past decades. The 
shadow can be divided into two major 
classes (self-shadow and cast shadow). 
A self-shadow occurs in the portion of 
an object that is not illuminated by 
direct light. A cast shadow is the area 
projected by the object in the direction 
of direct light [2]. The cast shadow is 
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CC3=R+G+B-B=R+G=Yellow    (12) 

The normalization equation as follows 
[8]: 
		݀ሺݔ, ሻݕ

ൌ
ሾܿݎݏሺݔ, ሻݕ െ 3ሻܥܥሺ݊݅ܯ ∗ 255ሿ

3ሻܥܥሺݔܽܯ െ 3ሻܥܥሺ݊݅ܯ
		ሺ13ሻ 

     where, Src (x, y) the gray value of 
the pixel    position (x,y)   of   the   
original imaged (x, y), the  grayscale  
value in       pixel      position    (x, y)     
after normalization, and min (src), max 
(src) denote   the   minimum  and  
maximum gray    value    in    the    
original  image respectively. 
 
Methodology and results 
     The spatial detection has been 
applied to detect the shadow and river 
or any water bodies for high-resolution 
images.  The proposed algorithm 
applies color analysis, for the water 
detection and approximate 
segmentation the river shape. The 
approach has been tested with high 
resolution color images, which 
extracted from Google earth images 
suitable of the algorithm has been 

contrasted with a visual localization of 
the river entailed in a given area, and 
shadow, these are the steps of the 
program. 
Step (1) Load the original image of 
Baghdad city in Fig. 3a. Compute the 
minimum and maximum RGB, apply 
the Eqs. (4, 5, 6) to obtain the (CC1-
CC2-CC3) components. See the results 
in Fig. 3 (b, c, d).  
Step (2) Apply the Eq. (13) to 
normalize CC3 to get results in Fig. 3e. 
Step (3) Apply the automatic threshold 
on Fig. 3e, for first condition and using 
3x3 or 5x5 mask to get the image in 
Fig. 4a. 
Step (4) Use the first filter=1/8*[-1 -1 -
1, -1 8 -1, -1 -1 -1] on output from step 
3 to then apply a second condition to 
get the image in Fig. 4b. 
Step (5) Apply the automatic 
threshold, for the second condition.  
ep (6) Use the second filter=1/8*[1 1 1, 
1 -8 1, 1 1 1] on output from step 4 
then apply a second threshold to get 
the image in Fig. 4c. 

 
(a) Original image1 

 

(b) CC1 - Component  

 

(c) CC2- Component (d) CC3 – Component 

 
Fig. 3: (a) original Image 1, (b, c, d) CC1-CC2-CC3 components. 
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	ܣܲ ൌ
ܶܲ

ܶܲ  ܰܨ
																																ሺ14ሻ 

 

ܣܥ ൌ
ܶܲ

ܶܲ  ܲܨ
																																		ሺ15ሻ 

 

ܣܱ ൌ ்ା்ே

்ାிା்ேାிே
																										ሺ16ሻ 

 
The proportion of non-shadow pixels 
which are erroneously detected as 
shadow pixels; TN (True Negative) is 
the proportion of non-shadow pixels 
which are detected correctly; FN (False 
Negative). Where, TP (True Positive) 
is the proportion of shadow pixels 
which are detected correctly; FP (False 
Positive) is the proportion of the 
shadow pixels which are erroneously 
detected as non-shadow pixels. 

     Image 4, the analysis of water 
detection algorithms is shown in 
Table1. Also the analysis of numerous 
the shadow detection algorithms is 
shown in Table 2. The algorithms 
include the algorithm TP, FN, FP, and 
TN are obtained in accordance with the 
referenced original image of the 
corresponding pixels to the total 
number of pixels in the image. FP 
value in our method has a notable 
reduction and indicates that it reduces 
the error of the proportion due to 
detecting the non-shadows as shadows. 
Analyzing PA, CA and OA value, can 
conclude that PA values in the images 
change a little and the other values are 
all improved. The improvement of OA 
value directly illustrates the effect of 
the algorithm. 

 
 

Table 1: Water assessment. 
Water 

Non-water
TP TN FP FN PA% CA% OA% 

Image1 
Figure 4-b 

112451 477 0.75 0.75 99.99 99.99 99.78 

Image2 
Figure 5-b 

553 328 0.8 0.5 99.99 99.99 99.99 

 
 

Table 2: Shadow assessment. 
Shadow 

Non shadow 
TP TN FP FN PA% CA% OA% 

Image1 
Figure 4-b 

955 717 0.75 0.75 99.99 99.99 99.99 

Image2 
Figure 5-b 

201480 599 0.75 0.5 99.99 99.99 99.99 

 
  
Conclusions 
     This is a new algorithm for shadow 
and river detect, are proposed here 
using of the normalization of the 
propose new equations CC3 
component to detect the shadow use 
CC1 to detect the water bodies in 
different color in Fig.4 a, the shadow is 
black and the water is green with white 
background. In Fig. 4b, the shadow is 

red and the water is yellow with white 
background, while in Fig. 4c the 
shadow is black and the water is green 
with a cyan background. In Fig. 5b, the 
shadow is black and the water is blue. 
In Fig. 5c, the shadow is red and the 
water is magenta. In Fig. 5d, the 
shadow is white and the water is 
yellow. Experimental results show that 
the algorithm detects the shadow more 
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accurately and efficiently, and reduces 
the error rate of detecting the non-
shadows as shadows. Present work  
could discriminate between shadow 
and water in many colors, furthermore 
the method can better eliminate the 
confusing shadows, thus improving the 
efficiency of the shadow detection the 
detection of automatic threshold  has 
presented the good result of shadowing 
in high-resolution satellite imagery and 
methods to detect and discrimination 
all types of shadows in many colors. It 
was found that the fast, algorithms 
providing  the best classification for 
shadow and water in the  image.     
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