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Abstract Key words 
     Shell model and Hartree-Fock calculations have been adopted to 
study the elastic and inelastic electron scattering form factors for 
25Mg nucleus. The wave functions for this nucleus have been utilized 
from the shell model using USDA two-body effective interaction for 
this nucleus with the sd shell model space. On the other hand, the 
SkXcsb Skyrme parameterization has been used within the Hartree-
Fock method to get the single-particle potential which is used to 
calculate the single-particle matrix elements. The calculated form 
factors have been compared with available experimental data.  
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 Mg25فوك لعوامل تشكل للاستطارة الالكترونية لنواة  -حسابات نموذج القشرة و هارتري
 1، ايمان موسى رشيد2، علي حسين تقي1علي عبد اللطيف الزبيدي

 جامعة بغداد، بغداد، العراق، قسم الفيزياء، كلية العلوم1
 جامعة كركوك، كركوك، العراق، قسم الفيزياء، كلية العلوم2

 الخلاصة
 .25Mgفوك اعتمدت لدراسة عوامل التشكل المرنة والغير المرنة لنواة  - حسابات نموذج القشرة وهارتري     

مع   USDAباستخدام نموذج القشرة والتفاعل المؤثر للجسيمين نوع لهذه النواة تم الحصول على الدوال الموجية
فوك -استخدم مع طريقة هاريتري SkXcsb سكريم باراميتر من نوعمن جهة اخرى، . sd ء نموذج القشرةفضا

حسابات عوامل . يستخدم لحساب عناصر مصفوفة الجسيم الواحد للحصول على جهد الجسيم الواحد والذي
 .المتاحة العمليةالنتائج التشكل قورنت مع 

 

Introduction  
     The Hartree-Fock (HF) method has 
provided the most reliable and least 
arbitrary tool for studying the nuclear 
structure. In a harmonic oscillator 
(HO) shell-model basis the HF method 
takes into account the smearing of the 
orbit occupation probabilities far from 
the Fermi surface. The diffuseness 
problem of the orbit occupation 
probabilities near the Fermi surface 
when using large-basis shell-model 
calculations leads to develop an 

effective approach. In this approach, 
the aspects HF method combine with 
the complex configuration mixing 
encountered in the shell-model 
calculations. 
     The interaction between nucleons 
and accurate treatment of the many-
body problem in atomic nuclei gives 
enough information on the residual 
interactions as well as an average 
potential for the shell model. The 
residual interaction, interaction 
between the valence nucleons, plays an 
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important role in accounting for many 
nuclear properties such as nuclear 
densities and form factors (longitudinal 
and transverse). It is usually 
represented by a set of two-body 
matrix elements, either directly 
determined from a best fit to 
experimental energy levels, or derived 
from a phenomenological potential. 
The best-studied regions and a 
comprehensive review of shell model 
interactions in different model spaces 
is given by Brown et al. [1]. 
     The HF method can be used to 
obtain the single-particle wave 
functions and the average density. The 
quantitative success of HF calculations 
is, however, limited by the lack of 
knowledge of the exact nucleon-
nucleon interaction and its 
renormalisation in finite 
nuclei. The actual nuclear interactions 
are approximated by an average one-
particle potential. The evolution of this 
one-body potential is more accurately 
and fundamentally taken into account 
with the self-consistent mean-field 
(SCMF), which is usually treated 
separately from the valence interaction. 
The SCMF can be achieved by using 
HF approach with Skyrme-type 
interactions [2]. 
     Vautherin and Brink [3] have 
proposed the Skyrme interaction, 
which has been the most popular 
interaction used within the HF 
calculations of nuclear landscape. With 
a proper parameterization, Skyrme 
interaction gives satisfactory results 
both for the saturation properties of 
nuclear matter and the properties of the 
giant resonances. The advantage 
provided by this interactions over other 
interactions that have an explicit finite 
range, is that the computations for the 
HF potentials and two-body matrix 
elements can be carried out relatively 
fast. 
     The sd model space includes the 
1s1/2, 0d5/2 and 0d3/2 valence orbits. The 

renormalized G matrix for the sd-shell 
was developed in the mid 1960’s by 
Kuo and Brown [4, 5, 6]. These G 
matrix interactions give reasonable 
agreement with the experimental A = 
18and A = 38 spectra. When the G 
matrix is used to calculate the spectra 
for the sd-shell nuclei with more than 
two particles or holes, the agreement 
with the experimental energy spectra 
deteriorates rapidly as the number of 
particles or holes is increased [7]. The 
USDA effective two body matrix 
elements (ETBME) [8] has been used 
in this model space to evaluate the one 
body density matrix element (OBDM).  
     The single-particle matrix elements, 
calculations may be done using 
different types of single particle 
potential such as the HO, Wood-Saxon 
(WS) and the Skyrme potentials. In 
order to determine the sensitivity of 
transverse form factor to the nuclear 
potential, the results of the spherical 
HF calculation can be carried out for a 
given nucleus using Skyrme potential 
with different parameterizations for the 
ground and excited states of its 
occupied orbit. The HF method does 
not include the deformation 
correlations since they will be part of 
the SM aspect [9]. The next step is to 
constructing the resultant diagonalized 
Hamiltonian matrices of all possible 
Slater determinants for the chosen 
energy operator in the chosen closely 
spaced valence orbitals to obtain the 
wave functions and correlation 
energies. 
     In the present work, elastic and 
inelastic electron scattering form 
factors for 25Mg nucleus will be 
calculated using the sd-model                 
space and SkXcsb [10] Skyrme 
parameterization within HF method. 
This parameterization gives the rms 
charge radius equal to 3.0059 fm for 
25Mg which is in agreement with the 
experimental value 3.0284 fm [11]. 
Also, the calculated binding energy is 
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199.225 MeV which is in good 
agreement with the experimental value 
205.6 MeV [12]. The measured dipole 
moment equal to -0.914 nm which is 
reasonably close to the experimental 
value -0.85545 (8) nm [13]. 

 
Theory  
     Skyrme interaction VSkyrme can be 
written as the sum of two- and three-

body parts [13]. The Skyrme forces 
with the three-body term replaced by a 
density-dependent two-body term, 
which are unified in a single form as 
an extended Skyrme force [14]: 
𝑉�𝑆𝑘𝑦𝑟𝑚𝑒 = 𝑉�𝑚 + 𝑉�𝐿𝑆 + 𝑉�𝑡,         (1)  
 
where, 

 

𝑉�𝑚 = 𝑡0�1 + 𝑥0𝑃�𝜎�𝛿12 +
𝑡3
6
�1 + 𝑥3𝑃�𝜎�𝜌𝛼(𝑟1)𝛿12 

+
𝑡1
2
�1 + 𝑥1𝑃�𝜎��𝛿12𝑘�2 + 𝑘�′2𝛿12� + 𝑡2�1 + 𝑥2𝑃�𝜎�𝑘�′𝛿12𝑘� 

 
𝑉�𝐿𝑆 = 𝑖𝑡4(𝜎�1 + 𝜎�1).𝑘�′ × 𝛿12𝑘� 

𝑉�𝑡 =
𝑡0
2
��3�𝜎�1.𝑘�′��𝜎�2.𝑘�′� − (𝜎�1.𝜎�2)𝑘�′2�𝛿12 

+𝛿12�3�𝜎�1.𝑘���𝜎�2.𝑘�� − (𝜎�1.𝜎�2)𝑘�2�� 
+𝑡0�3�𝜎�1.𝑘�′�𝛿12�𝜎�2.𝑘�� − (𝜎�1.𝜎�2)𝑘�′. 𝛿12𝑘�� 

 
 

where 𝛿12 = 𝛿(𝑟1 − 𝑟2), and the three-
body part by 
 
𝑉123

(3) = 𝑡3𝛿12𝛿13                                   (2) 

 
The k̂ and k̂ ′ are relative momentum 
operators which are defined as 
 

 

𝑘� =
1
2𝑖
�∇��⃗ 1 − ∇��⃗ 2�  , 𝑘�′ = −

1
2𝑖
�∇⃖��1 − ∇⃖��2�                                                          (3) 

 
with the 𝑘�′ acting to the left. The 
tensor force 𝑉�𝑡is usually neglected.The 
Skyrme parameterizations are usually 
determine by fitting the experimental 
ground state properties of finite nuclei 
within HF calculation. 

     The total binding energy of a 
nucleus, according to the Skyrme-
Hartree-Fock (SHF) method is 
obtained self-consistently from the 
energy functional [2] 

 
𝐸 = 𝐸𝑘𝑖𝑛(𝜏) + 𝐸𝑆𝑘𝑦𝑟𝑚𝑒(𝜌, 𝜏, 𝐽) + 𝐸𝐶𝑜𝑢𝑙�𝜌𝑝� + 𝐸𝑝𝑎𝑖𝑟 − 𝐸𝑐𝑚  ,                 (4) 

 
where the kinetic energy is given by: 

𝐸𝑘𝑖𝑛 = �𝑑3𝑟 �
ℏ2

2𝑚𝑝
𝜏𝑝 +

ℏ2

2𝑚𝑛
𝜏𝑛�   (5) 

 
     The Coulomb interaction is a well-
known piece of the nuclear interaction. 
However, its infinite range makes it 
very time consuming to evaluate the 
exchange part exactly and it is unwise 

to spend most of the computing time 
on a small contribution. Therefore the 
Coulomb-exchange part is treated in 
the so-called Slater approximation and 
one can obtain for the Coulomb energy 
ECoul [14] 

𝐸𝑘𝑖𝑛 =
𝑒2

2
� �

𝜌𝑝(𝑟)𝜌𝑝(𝑟′)
|𝑟 − 𝑟′|

∞

0

∞

0
𝑑3𝑟𝑑3𝑟′

+ 𝐸𝐶𝑜𝑢𝑙,𝐸𝑥𝑐ℎ                       (6) 
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𝐸𝐶𝑜𝑢𝑙,𝐸𝑥𝑐ℎ

= −
3
4
𝑒2 �

3
𝜋
�
1 3⁄

� 𝜌𝑝(𝑟)3 4⁄ 𝑑3𝑟
∞

0
 (7) 

 
The Coulomb part of the energy 
functional depends only on the charge 

density of the nucleus; however in 
many cases an approximation is made 
that replaces the charge density with 
the proton density. The 𝐸𝑆𝑘𝑦𝑟𝑚𝑒 is the 
energy functional of the Skyrme force 
and given by: 

 

𝐸𝑆𝑘𝑦𝑟𝑚𝑒 = �𝑑3𝑟 �
𝑏0
2
𝜌2 −

𝑏0′

2
�𝜌𝑞2 +
𝑞

𝑏3
3
𝜌𝛼+2 −

𝑏3′

3
𝜌𝛼�𝜌𝑞2

𝑞

 

+𝑏1𝜌𝜏 − 𝑏1′ �𝜌𝑞𝜏𝑞
𝑞

−
𝑏2
2
𝜌∆𝜌 +

𝑏2′

2
�𝜌𝑞∆𝜌𝑞
𝑞

 

−𝑏4𝜌∇. 𝐽 − 𝑏4′ �𝜌𝑞
𝑞

∇. 𝐽𝑞�                                                                (8)       

 
The value of { }p,nq ∈ , 𝜌 is the total 
density.  Depending on the value of 
q the qρ , qτ and qJ are the local 
densities, the kinetic energy 

densities and the spin-orbit current 
densities respectively for the protons 
and the neutrons they are given by  

 
𝜌𝑞 = � 𝑣𝑘2

𝑘∈Ω𝑞

|𝜓𝑘|2 ,     𝜏𝑞 = � 𝑣𝑘2

𝑘∈Ω𝑞

�∇��⃗ 𝜓𝑘�
2

  , 

𝐽𝑞 = −
𝑖
2
� 𝑣𝑘2

𝑘∈Ω𝑞

�𝜓𝑘
†∇��⃗ × 𝜎�𝜓𝑘 − �∇��⃗ × 𝜎�𝜓𝑘�

†
𝜓𝑘� .             (9) 

 
where 𝜓𝑘 is the single-particle wave 
function and 2

kυ is the occupation 
probability calculated taking the 
residual pairing interaction into 
account. The parameters ib  and ib ′  
used in 𝐸𝑆𝑘𝑦𝑟𝑚𝑒equation were chosen 
to give a compact formulation of the 
energy functional, the corresponding 
mean-field Hamiltonian and the 
residual interaction [2]. The term 𝐸𝑝𝑎𝑖𝑟 
is the pairing energy functional of the 
form: 

𝐸𝑝𝑎𝑖𝑟 = �
𝑉𝑞
4
� �1
∞

0𝑞∈𝑝,𝑛

−  �
𝜌(𝑟)
𝜌𝑐

�
𝛾

� �̅�𝑞(𝑟)2𝑑𝑟(10)  

 
where �̅�𝑞 is the pairing density 𝑉𝑞, 𝛾 
and 𝜌𝑐 are parameters that are 

phenomenologically adjusted. The 
kinetic part of the total energy E is not 

exactly equal to ∑ 𝑝�𝑖
2𝐴

𝑖
2𝑚

 because the 
kinetic energy of the center of mass 
𝐸𝑐𝑚must be subtracted: 

𝑇 = �
�̂�𝑖2

2𝑚
−
�∑ �̂�𝑖𝐴

𝑖 �2

2𝑚𝐴

𝐴

𝑖

 

=
1

2𝑚
�1 −

1
𝐴
���̂�𝑖2 −

1
2𝑚𝐴

𝐴

𝑖

��̂�𝑖

𝐴

𝑖≠𝑗
∙ �̂�𝑗                                 (11) 

The first term on the second line is 
again a one-body kinetic term with a 
corrected mass′ = 𝑚 𝐴

𝐴−1
 .  

     The electron scattering form factor 
involving angular momentum J and 
momentum transfer q, between initial 
and final nuclear shell model states of 
spin Ji,f are [15] 
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�𝐹𝐽
𝜂(𝑞)�2 =

4𝜋
𝑍2(2𝐽𝑖 + 1) � � �

𝑇𝑓 𝑇 𝑇𝑖
−𝑇𝑍 0 𝑇𝑍

�
𝑇=0,1

�𝐽𝑓𝑇𝑓��𝑇�𝐽𝑇
𝜂 ��𝐽𝑖𝑇𝑖��

2

×  �𝐹𝑓.𝑠(𝑞)�2 × �𝐹𝑓.𝑠(𝑞)�2 (12) 

 
where η selecting the longitudinal (L), 
transverse electric (E) and transverse 
magmatic (M) form factors, 
respectively 𝐹𝑐.𝑚(𝑞) = 𝑒𝑞2𝑏2/4𝐴 is the 
correction for the lack of translational 
invariance in the shell model (center-
of-mass correction) and 𝐹𝑓.𝑠(𝑞) =
𝑒−0.43𝑞2/𝐴is the nucleon finite size (fs) 
form factor while 𝑇𝑍is the z-
component of the isospin for the initial 
andfinal states and is given by 
𝑇𝑍 = (𝑍 − 𝑁)/2. 
     The reduced matrix element of the 
electron scattering operator 
𝑇�𝐽,𝑡𝑧expressed as the sum of the 

product of OBDM 𝑋𝐽𝑓𝐽𝑖
𝐽 (𝑡𝑧, 𝑗𝑖, 𝑗𝑓)  and 

the single-particle matrix elements, and 
is given by 
�𝐽𝑓�𝑇�𝐽,𝑡𝑧�𝐽𝑖⟩

= �𝑋𝐽𝑓𝐽𝑖
𝐽 (𝑡𝑧, 𝑗𝑖, 𝑗𝑓)�𝑗𝑓�𝑇�𝐽,𝑡𝑧�𝑗𝑖⟩

𝑗𝑖𝑗𝑓

  (13) 

 
where 𝑗𝑖 and 𝑗𝑓 label single-particle 
states for the shell model space, and 
𝑡𝑧 = 1 2⁄  for a proton and                
𝑡𝑧 = − 1 2⁄  for a neutron. The 
multipolemagnetic operator in terms of 
single nucleon Pauli-isospin𝑡𝑧 is 
 

𝑇�𝐽𝑀,𝑡𝑧
𝑀 (𝑞) = �𝑑𝑟 �𝑀��⃗ 𝐽𝐿𝑀(𝑞, 𝑟) ∙ 𝐽𝑐(𝑟, 𝑡𝑧) + 𝑞 �

1
𝑞
∇��⃗ × 𝑀��⃗ 𝐽𝐿𝑀(𝑞, 𝑟) ∙ �⃗�(𝑟, 𝑡𝑧)��             (14) 

 
where 𝐽��⃗ 𝑐(𝑟, 𝑡𝑧) is the convection 
current coming from the intrinsic 
magnetic moments of target nucleus, 
and 𝜇���⃗ (𝑟, 𝑡𝑧) is the magnetization 
density operator. The vector 
function 𝑀��⃗ 𝐽𝐿𝑀(𝑞. 𝑟) is expressed as, 
𝑀��⃗ 𝐽𝐿𝑀(𝑞. 𝑟) = 𝑗𝐿(𝑞𝑟)𝑌�⃗𝐽𝐿𝑀(Ωr)        (15) 
 
where 𝑌�⃗𝐽𝐿𝑀(Ωr) is the vector spherical 
harmonics, defined as: 
𝑌�⃗𝐽𝐿𝑀(Ω𝑟)

= �⟨𝐿𝑀𝐿1𝑞|𝐽𝑀⟩
𝑀𝐿𝑞

𝑌�⃗𝐽𝐿𝑀(𝜃,𝜑)�̂�𝑘     (16) 

  
with �̂�±1 = 1

√2
(𝑥� ± 𝑖𝑦�) and �̂�0 = �̂� are 

the basis vector. 
The transition probability is defined at 
the photon point; with momentum 
transfer q = k = Ex/ℏc (Ex  is the 
excitation energy). Since the center of 
mass and finite nucleon size correction 
factors are nearly equal to one for this 
value of q, the reduced transition 

probability 𝐵(𝜂𝐽) is written in terms of 
the form factor in this limit as [16]: 

𝐵(𝜂𝐽) =
[(2𝐽 + 1)‼]2𝑍2𝑒2

4𝜋𝑘2𝐽 �𝐹𝐽
𝜂(𝑘)�2  (17) 

 
Results and discussion 
In the present work, the SM and HF 
method have been applied to 
investigate elastic and inelastic of 25Mg 
nucleus. The sd shell model space has 
been used for this purpose with 
suitable Hamiltonian to provide the 
realistic wave functions. The single-
particle matrix elements have been 
calculated with SHF potential with 
different parameterizations. The 
OBDM elements have been calculated 
using the NuShellX@MSU [17] shell 
model code which uses proton-neutron 
formalism. The OBDMs are then used 
to calculate the magnetic matrix 
element MJ operator.  
According to the sd shell model space, 
25Mg nucleus is considered as an inert 
16O core (1s)4 (1p)12 and nine valence 
nucleons distributed over the active 
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shells 1d5/2, 2s1/2 and 1d3/2. The USDA 
Hamiltonian [7] has been used to 
provided realistic sd-shell (1d5/2, 1d3/2, 
2s1/2) wave functions for the states 5/2+ 
ground state (GS), 7/21

+ 1.612 MeV 
and 9/21

+ 3.405 MeV.  
Fig. 1a shows the calculated total 
contribution of M1, M3, and M5 
multipoles for the USDA effective 
interaction for the 5/2+ GS of 25Mg 
nucleus using SkXcsb parameterization 
along with experimental data [18]. It is 
clear that the total transverse form 
factor is in good agreement with the 
experimental data. The contribution to 
the total form factor for M1 is 
dominant at momentum transfer below 
q=1.5 fm-1. For high momentum 
transfer up to q=1.5 fm-1 the 
contribution of M5 is very large. 
Therefore one can see that the M5 is 
more sensitive to the experimental data 
and describes it very well in the 
momentum transfer range from 1 to 
3fm-1. The total transverse magnetic 
form factor is also calculated with 
different Skyrme parameterizations 
and plotted together with the 
conventional HO potential in 
comparison with experimental data in 
Fig.1b. Additionally one can see that 
the total transverse magnetic form 
factor curve calculated with SkXcsb 
parameterization is the nearest curve to 
the experimental data than the other 
parameterizations and HO potential 
curves.  
     The total elastic 
longitudinal form factor 
and its contributions C0, C2 and C4 for 
the 25Mg are calculated using SkXcsb 
parameterization and illustrated in Fig. 
2a. It is noticeable that the C0 have 
two diffraction minima with 
approximately the location within 
q=1.4 fm-1 and q=2.4 fm-1 respectively. 
The C2 contribution is dominated at 
low and high momentum transfer, 
while the C4 has a small contribution 
to the total at the medium q around 2 

fm-1. The transvers electric form 
factors E2 and E4 with their 
summation are shown in Fig. 2b. The 
main contribution to the E2+E4 curve 
is belonging to E2 multipoles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

Fig. 1: The total theoretical magnetic 
form factor for GS of 25Mg Jπ=5/2+ 

nuclei compared with experimental 
data [18] (a) using SkXcsb 
parameterization (b) using different 
Skyrme parameterizations and HO. 

00 11 22 33
q (fmq (fm-1-1))

1010-8-8

1010-7-7

1010-6-6

1010-5-5

1010-4-4

IF
(q

)I
IF

(q
)I

2 2

(b) Transverse magnetic form factor(b) Transverse magnetic form factor
 5/2 5/2++ GS GS

00 11 22 33
q(fmq(fm-1-1))

1010-8-8

1010-7-7

1010-6-6

1010-5-5

1010-4-4

|F|F
T T
(q

)|
(q

)|
2 2

SkM*SkM*
SkXSkX
SkOSkO
SLy4SLy4
SkxcsbSkxcsb
HOHO
Exp.Exp.

(b) (b) 2525Mg  JMg  Jππ=5/2=5/2++

      

(a) 

(a) 



Iraqi Journal of Physics, 2016                                                                          Vol.14, No.31, PP. 28-36 
 

 34 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     The total transvers form factor and 
its contributions M1, E2, M3, E4 and 
M5 for the first 7/21

+excited state 
1.612 MeV of 25Mg nucleus are 
calculated and presented in Fig. 3. The 
results of the total transverse form 
factor calculated using SkXcsb 
parameterization are in reasonable 
agreement comparing with the 
experimental data [19]. The main 
contribution in most of the regions of 
momentum transfer comes from M1 
and M5, where M1 has the dominant 
contribution in the region between 0 
and 1.2 fm-1 and M5 has the main 
contribution in the range of momentum 

transfer from 0.5 to 3 fm−1. M1 and E4 
have small contribution to the total 
transverse form factor in the range 1.2 
to 2 fm-1 of momentum transfer. 
     The calculation of the total 
contribution of E2, M3, E4 and M5 
multipoles for the exited 9/21

+ state 
with an excitation energy of 3.405 
MeV in the 25Mg nucleus using the 
SkXcsb parameterization was shown 
Fig. 4. The total form factor was 
compared with the available 
experimental data [19]. Inspection of 
the total transverse curve reveals that 
the shape of the calculated form factors 
is in qualitative agreement with the 
experimental data. The M5 component 
of the transverse scattering dominates 
at high momentum transfer for 1.5 to 3 
fm-1. For low momentum transfer 
below 0.5 fm-1 the E2 component is 
dominant. While M3 component 
dominant in the medium momentum 
transfer from 1.75 to 1.5 fm-1. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 

Fig. 2: Theoretical longitudinal (a) and 
transverse (b) form factors for 25Mg in 
5/2+ state using SkXcsb parameterization. 
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Fig. 3: Theoretical longitudinal and 
transverse form factors for 7/21

+, 1.612 
MeV using SkXcsb parameterization 
compared with experimental data [19].  
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     The energy levels and reduced 
transition probabilities for low-lying 
positive parity states have been 
calculated in the sd model space with 
USDA effective interaction and 
SkXcsb parameterization and were 
shown in Fig.5 compares the 
calculated energy levels with the 
experimental energy spectrum. 
Although precise agreement between 
the theoretical and experimental 
schemes is not carry out very 
successfully, it is clear that the shell 

model calculations with SkXcsb 
parameterization are able to predict for 
the high density of positive parity 
states. The calculated values for all 
transitions in 25Mg, which are 
considered in the present work have 
been tabulated in Table 1. 
 

 
 
Fig. 5: Energy levels for the positive 
parity states of 25Mg nucleus compared 
with experimental data taken from [20].  

 
Table 1: Excitation energies, reduced transition probabilities for the positive parity states of 
25Mg nucleus. 

 
Conclusions 

In studying the extent of 
applicability of the selected Skyrme 
parameterizations to the 25Mg nucleus, 
it can be noticed a good general 

agreement, which was found in 
extensive comparisons of measured 
transverse magnetic form factors with 
the calculated results using the Skyrme 
parameterization. The results of this 
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Fig. 4: Theoretical longitudinal and 
transverse form factors for 9/21

+, 3.405 
MeV using SkXcsb parameterization 
compared with experimental data [19].  
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study serve to provide a better 
understanding of the nuclear structures 
of the investigated target nucleus and 
may be considered as an indication to 
the validity of the SM+HF model in 
this nucleus. The extent of the 
agreement is, in most cases, 
significantly further improved by 
constraining the HF calculations to use 
shell-model occupancies. The 
agreement observed revealed the 
adequacy of the HF mean-field 
approximation for this nucleus. 
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