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Abstract Key words 
     Simulation of direct current (DC) discharge plasma using 
COMSOL Multiphysics software were used to study the uniformity 
of deposition on anode from DC discharge sputtering using ring and 
disc cathodes, then applied it experimentally to make comparison 
between film thickness distribution with simulation results. Both 
simulation and experimental results shows that the deposition using 
copper ring cathode is more uniformity than disc cathode. 
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  تقنية التفريغ الكھربائي للتيار المستمر في التحكم بانتظام الترسيب باستخدام كاثود حلقي

  محمد عودة سلمان ،عبدالواحد عادمكاظم 

  قسم الفيزياء، كلية العلوم، جامعة بغداد، العراق

  الخلاصة
 للتيار المستمر محاكاة لبلازما التفريغ الكھربائيلعمل  COMSOL Multiphysicsتم استخدام برنامج      

نود الناتج من عملية الترذيذ بواسطة التفريغ الكھربائي عن طريق استخدام كاثود لدراسة انتظام الترسيب على الأ
حلقي واخر دائري، ثم تطبيق ذلك عمليا لعمل مقارنة بين توزيع سمك الغشاء مع نتائج المحاكاة. بينت نتائج 

  من الكاثود الدائري.  كاثود حلقي من النحاس أكثر انتظاما  العملية أن الترسيب باستخدامالنتائج لمحاكاة وا
 
Introduction 
     In the last decade, many researches 
deal with DC glow discharge 
modelling to investigate the suitable 
arrangement for specific application[1- 
3]. 
     For many plasma applications, fluid 
moment (density, flow velocity, 
temperature) descriptions of a charged 
particle species in a plasma are 
sufficient. Continuity equation for all 
species and energy within the plasma, 
Maxwell’s equations and Boltzmann 
equations were solved as a system [4].  
     COMSOL Multiphysics package 
based on finite element method. The 
differential equations describing the 
motion of species numerically for a 

finite number of spatial points taking 
into account their interaction with the 
applied electric field into 
consideration. 
 
Mathematical model 
     Plasma simulating by finite element 
modeling (FEM) is used to make 
approximate solution for differential 
equations which describe the drift 
diffusion approximation [5]. Which 
contents electron and electron energy 
conservation equations, the heavy 
species diffusion transport equation 
and the Poisson's equation into the 
suitable form describe dc discharge 
problems, then solved the difference 
equations numerically. 
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     Fig. 13 shows the experimental 
result for rate of deposition on anode at 
constant pressure (0.2 mbar) from ring 
cathode made from copper and with 
applied voltage (-700 and -1000V) 
calculated by measuring film 
thicknesses at different radial position. 

This figure shows that the deposition 
have more uniformity than the 
deposition from disc cathodes but it 
less than from disc cathode as shown 
in the comparison between the two 
systems configurations in Table 4. 

 

 
Fig. 13: Experimental results for rate of deposition at different radial position using ring 

cathode at -700 and -1000 volt applied voltage. 
 

Table 4: Comparison between simulation and experimental results for deposition rate 
(nm/h) for disc and ring cathode at -700 and -1000 V. 

Simulation results (disc Cu) Experimental results (disc Cu)
r (cm) -700   V -1000 V -700   V -1000 V
0.00 166.9 236.7 156.80 230.00
1.25 157.0 223.0 153.60 228.20
2.50 139.6 198.5 119.30 180.50
3.75 109.4 156.6 90.30 110.00

Simulation results (Ring Cu) Experimental results (Ring Cu)
r (cm) -700   V -1000 V -700   V -1000 V
0.00 105.6 141.1 105.40 140.60
1.25 110.2 147.4 110.20 135.90
2.50 117.5 157.1 116.90 145.10
3.75 111.4 150.8 95.60 124.00

Conclusions 
     In our work, we simulate dc 
sputtering in argon gas for the two 
cathode electrode configurations using 
2D axial symmetric by COMSOL 
software, where the study showed that 
the simulation results gives us a good 
prediction of the uniformity of 
deposition on the anode. The study 
showed that the distribution of 
deposition on the anode be more 

regularly using ring electrode than the 
disc cathode. The experimental result 
for rate of deposition on anode at 
constant pressure from disc and ring 
copper cathode using -700 and -1000 
volt at different radial position 
approximately have the same 
behaviors of simulation results, but 
with less values, maybe due to 
supposing in simulation that no 
reflected metal atoms from anode. The 
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deposition rate increase with increase 
applied voltage as a result of 
increasing colliding ion energy.  
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