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 -سكيرمباستخدام طريقة  32Sو  20Ne ،24Mg ،28Siدراسة التركيب النووي للنوى   

  فوك - ھارتري

  أحمد نجم عبدالله    

 قسم الفيزياء، كلية العلوم، جامعة بغداد، بغداد، العراق

  الخلاصة
 ,SKxtb, SGII, SKO, SKxs15 فوك مع برامترات مختلفة ھي  -ھارتري - تم استخدام طريقة سكيرم        

SKxs20, SKxs25  2النووية القشرة ضمن واقعة لنوى لدراسة خصائص الحالة الارضيةs-1d   يكون فيھا
ً الى عدد النيوترونات  (Z)عدد البروتونات  مثل كثافة كل ) 32Sو 20Ne ،24Mg ،28Si مثل النوى( (N)مساويا

، البروتون والكتلة مع انصاف الاقطار المرافقة لھا، بالاضافة الى حساب السمك النيوتروني، عوامل من الشحنة
نظيراتھا ومعدل طاقة الربط النووية. لقد تمت مقارنة النتائج النظرية مع للاستطارة الالكترونية المرنة التشكل 

   .القيم العملية المتاحة من
  

Introduction 
     The electron scattering from the 
nucleus at high energy gives important 
information about the nuclear 
structure. Information obtained from 
the high energy electron scattering by 
the nuclei depends on the magnitude of 
the de Broglie wave length that is 
associated with the electron which is 
compared with the range of the nuclear 
forces. When the energy of the incident 
electron is in the range of 100 MeV 
and more, the de Broglie wave length 
will be in the range of the spatial 

extension of the target nucleus. Thus 
with this energy, the electron 
represents a best probe to study the 
nuclear structure [1]. The nuclear 
charge radius is one of the most 
obvious and important nuclear 
parameters that give information about 
the nuclear shell model and the 
influence of effective interactions on 
nuclear structure. Experimental 
information on root-mean square (rms) 
nuclear charge radii can be derived 
from different sources and has been 
published several times. The results 
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from electron scattering experiments 
are expressed in terms of the (rms) 
radius, and for some nuclei, in 
parameters of the Fermi-Dirac 
distribution [2].  
     The Hartree-Fock method with an 
effective interaction with Skyrme 
forces is widely used for studying the 
properties of nuclei. This method 
allows possibility to calculate many 
aspects of nuclei by means of quantum 
mechanical methods in microscopic 
scale. Especially the method is 
successfully used for a wide range of 
nuclear characteristics such as binding 
energy, rms charge radii, neutron and 
proton density, electromagnetic 
multipole moments, etc. The Hartree-
Fock description of nuclear properties 
yields good results not only for stable 
even-even spherical and deformed 
nuclei, but also for neutron-rich and 
neutron -deficient nuclei [3]. Aytekin 
[4] has been calculated the proton, 
neutron and charge densities, the 
corresponding rms nuclear radii and 
neutron skin thickness for the neutron-
rich Ni, Kr and Sn isotopes by the 
Hartree-Fock method with an effective 
Skyrme force based on nucleon-
nucleon interactions known as SI, SIII, 
SVI, T3, SKM and SKM*. The results 
obtained via theoretical approach were 

close to experimental observations. Tel 
[5] has been calculated the neutron and 
proton densities, rms charge radii, 
neutron radii, mass radii and neutron 
skin thickness for 8–18Be isotopes 
nuclei. The results obtained were 
compared with the experimental and 
theoretical results of other researchers 
by using Hartree–Fock method with an 
effective interaction with Skyrme 
forces.  
     In this research, we investigate the 
ground state features of 20Ne, 24Mg, 
28Si and 32S nuclei using the Skyrme–
Hartree–Fock (SHF) method with the 
Skyrme parameters; SKxtb [6], SGII 
[7], SKO [8], SKxs15, SKxs20 and 
SKxs25 [9] and compared the obtained 
results with the available experimental 
data.   
 
Theory 
     The effective interaction proposed 
by Skyrme was designed for Hartree–
Fock (HF) calculations of nuclei. It 
basically consists of a two-body term 
which is momentum dependent, and a 
zero range three-body term [10]: 
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 The application of the Skyrme force in 
the field of low energy nuclear physics 
has been greatly motivated by the 
classical work of Vautherin and Brink 
[11]. In the HF calculations, the three-
body term in (1) can be replaced with a 
density-dependent two-body term [11]: 

௜ܸ௝௞
ሺଷሻ ≅ ௜ܸ௝

ሺଶሻ ൌ
1
6
൫ߩଷݐ ሬܴԦ൯ߜሺݎԦሻ,											ሺ4ሻ 

where 
ሬܴԦ ൌ ൫ݎԦ௜ ൅ Ԧݎ	and	Ԧ௝൯/2ݎ ൌ ൫ݎԦ௜ െ  		,Ԧ௝൯ݎ
the relative momentum operators 
෠݇ ൌ ൫׏௜ െ ௝൯/2݅ and ݇′෡׏ ൌ
െ൫׏௜ െ  ௝൯/2݅ are acting to the right׏
and to the left, respectively [10]. 
The Skyrme forces are unified in a 
single form as an extended Skyrme 
force [12] 
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where ఙܲ is the space exchange 
operator, ߜሺݎԦሻ is the delta function, ሬ݇Ԧ 
is the relative momentum,  ߪԦ	is the 
vector of Pauli spin matrices and ݐ଴, ݐଵ, 
 are ߙ ଷ, andݔ ,ଶݔ ,ଵݔ ,଴ݔ ,ସݐ ,ଷݐ ,ଶݐ
Skyrme force parameters. 
The proton and neutron densities are 
given in terms of a few nucleon 
densities [5]: 
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ାሺݎԦሻ	߰ఉሺݎԦሻ

ఉ∈௚

,															ሺ6ሻ 

 
where ݃ denotes the proton or neutron, 
߰ఉ is the single-particle wave function 
of the state	ߚ and ݓఉ represents the 
occupation probability of the state ߚ.  
     To compute the observable charge 
density from the Hartree–Fock results, 
one has to take into account that the 

nucleons themselves have an intrinsic 
electromagnetic structure [13] Thus 
one needs to fold the proton and 
neutron densities from the Hartree–
Fock method with the intrinsic charge 
density of the nucleons. Folding 
becomes a simple product in Fourier 
space, so the densities are transformed 
to the so-called form factors: 

ሻݍ௞ሺܨ ൌ නߨ4 ሻݎݍଶ݆଴ሺݎ
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where ݆଴ is the spherical Bessel 
function of the zeroth order. 
The root mean square (rms) radii of the 
neutron, proton and charge densities 
can be obtained from these densities as 
follows [10] 
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The neutron skin thickness t, is defined 
as:  
ݐ ൌ ௡ݎ െ  ሺ9ሻ																																											௣ݎ
 
 
Results and discussions 
     The Skyrme-Hartree-Fock (SHF) 
method has been employed to study 
the ground state properties of 20Ne, 

24Mg, 28Si and 32S nuclei  including the 
proton, charge and matter densities, 
charge, proton, neutron and matter rms 
radii, neutron skin thickness, the 
binding energies per nucleon and 
elastic charge form factors. The 
Skyrme force parameters that have 
been used in the present study are 
given in Table 1. 
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Table 1: The parameters of Skyrme force used in the present calculations. 
Parameter SKxtb [6] SGII [7] SKO [8] SKxs15 [9] SKxs20 [9] SKxs25 [9] 

t0 (MeV.fm3) -1446.759 -2645.0 -2103.7 -2883.294 -2885.239 -2887.813 
t1 (MeV.fm5) 250.852 340.0 303.4 291.598 302.733 315.504 
t2 (MeV.fm5) -132.993 -41.9 791.7 -314.892 -323.419 -329.305 
t3 (MeV.fm3α) 12127.649 15595.0 13553.0 18239.547 18237.492 18229.807 
t4 (MeV.fm5) 153.054 105.0 118.0 161.351 162.726 163.933 

x0 0.329 0.09 -0.21 0.476 0.137 -0.186 
x1 0.518 -0.059 -2.81 -0.254 -0.255 -0.248 
x2 0.139 1.425 -1.46 -0.611 -0.607 -0.601 
x3 0.018 0.06 -0.43 0.529 0.054 -0.409 
α 0.5 0.167 0.25 0.167 0.167 0.167 

   
   

     

The calculated charge rms radii for 
20Ne, 24Mg, 28Si and 32S nuclei  using 
different Skyrme parameters along 
with those of RMFT [14] and 
experimental [2] results are listed in 
Table 2. It can be shown that the 
charge rms radii are increased from 
(2.900-2.980) fm for 20Ne to (3.239- 
3.292) fm for 32S as the proton number 
increases. Also, the calculated charge 
rms radii of 20Ne, 24Mg and 28Si with 
SKxs25 parameter are more close to 
the experimental data than other 
parameters. In case of 32S, analysis 
shows that the calculated charge rms 
radii with SKO parameter are in 
excellent agreement with the 
experimental data. Besides, the 
calculated charge rms radii for selected 
nuclei are more close to the 
experimental results than those of 
RMFT results. 
     The calculated results of the proton 
and neutron rms radii for selected 
nuclei with different Skyrme 
parameters are tabulated in Tables 3 
and 4, respectively. For comparison the 
results of RMFT [14] are also given in 
these tables. Our analyses show that 
the values of these rms radii increase 

with the increasing of proton number. 
On the other hand, the calculated 
proton and neutron rms radii of 20Ne, 
24Mg and 28Si obtained by SKxs25 
parameter are more close to the RMFT 
results than other parameters. In case 
of 32S nucleus, the calculated proton 
rms radius obtained with SGII 
parameter is closer to the RMFT 
results, whereas the neutron rms radius 
calculated with SKxs20 parameter is in 
well agreement with the RMFT results. 
The neutron skin thickness is 
calculated as the differences of neutron 
and proton rms radii obtained with 
SKxs25 parameter is also shown in 
Table 4. It has been shown from Table 
4 that the neutron skin thickness t 
values have decreased from (-0.049) 
fm for 20Ne to (-0.062) fm for 32S by 
increasing the proton number. Finally, 
the matter rms radii with different 
Skyrme parameters have been 
calculated for nuclei under study and 
given in Table 5. It has been shown 
from Table 5 that the values of matter 
rms radii have approximately been 
increased from (2.807-2.882) fm for 
20Ne to (3.136-3.179) fm for 32S with 
the increasing of the number of proton. 
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Table 2: Calculated charge rms radii compared with RMFT and experimental results. 
Nuclei SKxtb SGII SKO SKxs15 SKxs20 SKxs25 RMFT [14] Exp. [2] 

20Ne 2.900 2.933 2.915 2.958 2.968 2.980 3.020 2.992 
24Mg 3.014 3.038 3.014 3.058 3.068 3.079 3.126 3.080 
28Si 3.108 3.116 3.093 3.138 3.146 3.158 3.177 3.154 
32S 3.251 3.271 3.239 3.273 3.281 3.292 3.282 3.239 

 
 

Table 3: Calculated proton rms radii compared with RMFT results. 
Nuclei SKxtb SGII SKO SKxs15 SKxs20 SKxs25 RMFT [14] 

20Ne 2.824 2.858 2.840 2.884 2.894 2.906 2.911 
24Mg 2.930 2.955 2.931 2.976 2.986 2.998 3.021 
28Si 3.022 3.030 3.006 3.138 3.062 3.073 3.075 
32S 3.167 3.188 3.155 3.190 3.199 3.210 3.183 

 
 

Table 4: Calculated neutron rms radii compared with RMFT results. 
Nuclei SKxtb SGII SKO SKxs15 SKxs20 SKxs25 RMFT [14 ] t (SKxs25) 

20Ne 2.789 2.822 2.814 2.841 2.848 2.857 2.871 -0.049 
24Mg 2.893 2.918 2.904 2.932 2.939 2.948 2.983 -0.050 
28Si 2.984 2.991 2.979 3.006 3.013 3.022 3.036 -0.051 
32S 3.117 3.136 3.117 3.132 3.139 3.148 3.139 -0.062 

 
 

Table 5: Calculated matter rms radii. 
Nuclei SKxtb SGII SKO SKxs15 SKxs20 SKxs25 
20Ne 2.807 2.840 2.827 2.863 2.871 2.882 
24Mg 2.912 2.937 2.917 2.954 2.962 2.973 
28Si 3.003 3.011 2.993 3.030 3.038 3.048 
32S 3.142 3.162 3.136 3.161 3.169 3.179 

    
   

 

     Fig. 1 shows the calculated charge 
density distributions for 20Ne 
[Fig.1(a)], 24Mg [Fig. 1(b)], 28Si [Fig. 
1(c)] and 32S [Fig. 1(d)] nuclei 
obtained by SKxs25 Skyrme parameter 
along with the fitted to the 
experimental data (denoted by filled 

circle symbols) [2]. One can see from 
this figure that the calculated charge 
density distributions are in very good 
agreement with those fitted to the 
experimental data except a slight 
deviation appearing in the calculated 
results at the region of   small r. 
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