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Abstract Key words 
     The proton momentum distributions (PMD) and the  elastic 
electron scattering form factors F(q) of the ground state for some 
even mass nuclei in the 2p-1f shell for 70Ge, 72Ge, 74Ge and 76Ge are 
calculated by using the Coherent Density Fluctuation Model (CDFM) 
and expressed in terms of the fluctuation function (weight function) 
|F(x)|2. The fluctuation function has been related to the charge 
density distribution (CDD) of the nuclei and determined from the 
theory and experiment. The property of the long-tail behavior at high 
momentum region of the proton momentum distribution has been 
obtained by both the theoretical and experimental fluctuation 
functions. The calculated form factors F (q) of all nuclei under study 
are in good agreement with those of experimental data throughout all 
values of momentum transfer q. 
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  توزيعات الزخوم البروتونية وعوامل التشكل المرنه لبعض نظائر الجرمانيوم    

  فرح فارس قدوري         ،الطاف عبد المجيد الرحماني

  العراق ،بغداد ،جامعة بغداد ،كلية العلوم للبنات ،قسم الفيزياء

  الخلاصة
الة الارضية حلكترونيه المرنة للتم حساب كل من توزيعات زخم البروتونات وعوامل التشكل للاستطارة الا  

حيث تم  76Ge)و 70Ge) ،72Ge ، 74Ge للنظائر 2P-1F ضمن القشرة النووية  الواقعة النوى الزوجية لبعض
دالة التموج. ترتبط دالة التموج مع توزيعات كثافة البروتونات وتم حسابھا من النتائج النظرية التعبير عنھا بدلالة 

ة البروتونات. وقد تميزت نتائج توزيعات زخم البروتونات المعتمدة على دالة التموج والعملية لتوزيعات كثاف
ان حساب عوامل التشكل الطولية لاستطارة  الزخم العالي.النظرية والعملية بصفة الذيل الطويل عند منطقة 

   .الالكترون المرنة لجميع النوى  النظرية  تتفق مع النتائج العملية للنوى
  

Introduction 
     The study of momentum 
distribution is important tool for 
studying the ground state properties of 
nuclei, especially the momentum 
distribution of protons [1]. This is 
measured in the framework of the 
coherent density fluctuation model 
(CDFM), which is exemplified by the 
work of Antonov et al. [2, 3]. There is 
no method for directly measuring the 
proton momentum distribution PMD in 

nuclei. The quantities that are 
measured by particle-nucleus and 
nucleus-nucleus collisions are the cross 
sections of different reactions, and 
these contain information on the PMD 
of target nucleus.  The experimental 
evidence obtained from inclusive and 
exclusive electron scattering on nuclei 
establish the existence of long- tail 
behavior of the PMD at high 
momentum region (k ≥ 2 fm-1) [4-6].  
The mean field theories cannot 
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describe correctly the form factor F(q) 
and the PMD simultaneously [7] and 
they exhibit a steep- slope behavior of 
the PMD at high momentum region. In 
fact, the PMD depends a little on the 
effective mean field   considered due to 
its sensitivity to the short rang and 
tensor nucleon-nucleon correlations [7, 
8] which are not included in the mean 
field theories. In the CDFM, the local 
charge density distribution (CDD) and 
the PMD are simply related and 
expressed in terms of an 
experimentally obtainable fluctuation 
function (weight function) |f(x)|2. A lot 
of experimental and theoretical work 
on elastic and inelastic electron 
scattering at different energies has 
provided detailed information on the 
charge density distribution of the 
nuclear ground state and on the energy, 
strength, and quantum numbers of the 
excited states produced by single 
particle or collective excitation 
mechanisms [9-12]. The interest in 
charge densities result from that, they 
can provide more detailed information 
for the internal structure of nuclei, 
because they are directly related to the 
wave functions of protons that is 
important keys for many calculations 
in nuclear physics [13, 14]. There are 
several theoretical methods used to 
study elastic electron- nucleus 
scattering, such as the plan-wave Born 
approximation (PWBA), the eikonal 
approximation and the phase-shift 
analysis method [15-19]. The PWBA 
method can give qualitative results and 
has been used widely for its simplicity. 
To include the Coulumb distortion 
effect, which is neglected in PWBA, 
the other two methods may be used.  In 
the last few years, some theoretical 
studies of elastic electron scattering off 
exotic nuclei have been performed. 
Wang et al. [15, 16] studied such 
scattering along some isotopic and 
isotonic chains by combining the 
eikonal approximation with the 

relativistic mean field theory. 
Karataglidis and Amos [18] have 
studied the elastic electron scattering 
form factors, longitudinal and 
transverse, from exotic (He and Li) 
isotopes and from B nucleus using 
large space shell models. Al-Rahmani 
and Hussien [20] have studied the 
CDD and elastic electron scattering 
form factors of some 2s-1d shell nuclei 
using the PWBA and demonstrated 
that the inclusion of the higher 1f-2p 
shell in the calculation leads to 
produce a good result in comparison 
with those of the experimental data.  
Hamoudi et al. [21] have been 
calculated elastic electron scattering 
form factor (EESFF) and the nucleon 
momentum distribution (NMD) of the 
ground state for p-shell nuclei with 
Z=N such as ( CBLi 12106 ,,  and N14

nuclei).  Besides, the weight functions 
have expressed in terms of nucleon 
density distribution of the nuclei and 
the coherent density fluctuation model 
has expressed in term weight function 
|f(x)|2 and measured from the 
experiment and the theory. Their 
results appeared a good agreement 
with the experimental results.  AL-
Rahmani A.A. [22] have been 
calculated the G.S. elastic charge form 
factors and proton momentum 
distribution for the upper region of the 
2S-1d shell nuclei like (35CI, 37CI and 
39K). At the same year, also, AL-
Rahmani A.A. [22] have measured the 
nucleon momentum distributions and 
elastic electron scattering form factor 
of the ground state for some odd 2s-1d 
shell nuclei like (19F,25Mg,27Al and 
29Si) by using the coherent density 
fluctuation model and expressed in 
terms of the fluctuation function 
(weight function)|f(x)|2. In addition, 
through her works she found that the 
inclusion of the quadrapole form 
factors FC2 (q) in all nuclei under study 
which was described by the 
undeformed 2S-1d shell nuclei, was 
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essential for obtained a notable 
accordance between the experimental 
and theoretical form factors. It is 
important to point out that all above 
calculations obtained in the framework 
of CDFM proved a high momentum 
tail in the PMD. Elastic electron 
scattering from 40Ca nucleus was also 
investigated in [23], where the 
calculated elastic differential cross 
sections  ds/dΩ  are in good agreement 
with those of experimental data. 
     The aim of the present work is to 
derive an analytical expression for the 
CDD applicable throughout all 2p-1f 
shell nuclei based on the use of the 
single particle harmonic oscillator 
wave functions and the occupation 
numbers of the states. The derived 
form of the CDD is employed in 
determining the theoretical weight 

function 2
)( xf  which is then used in 

the CDFM to study the PMD and 
elastic scattering form factors F(q) for 
some 2p-1f shell nuclei for 70Ge, 72Ge, 
74Ge and 76Ge isotopes.  It is found that 
the theoretical weight function based 
on the derived CDD is capable to give 
information about the PMD and elastic 

charge form factors as do those of 
experimental data. 
 
Theory 
     The charge density distribution of 
one –body operator can be written 
respectively, as [21] 

 2)()12(2
4

1
)(  

nl
nlnlc rRlr 


  (1) 

where )(rc  is the charge density 

distribution  of nuclei, nl  is the 

proton occupation probability of the 
state nl  ( nl = 0 or 1 for closed shell 

nuclei and 0 < nl < 1 for open shell 

nuclei) and )(rRnl  is the radial part of 

the single-particle harmonic oscillator 
wave function. To derive an explicit 
form for the CDD of  pf 21   shell 
nuclei, it is supposed that there is a 
core of filled s1  and p1  and 1d shells 
and the proton occupation numbers in 

,2s f1  and p2  shells are equal to
 ),2(   and ),20(  Z  

respectively, for (70Ge, 72Ge, 74Ge and 
76Ge), instead of 2, )20( Z  and 0 as in 
the simple shell model. Using this 
assumption in Eq. (1), we get:-     
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where Z  is the atomic number of 
nuclei, the parameter   characterizes 
the deviation of the proton occupation 
numbers from the prediction of the 
simple shell model ( 0 ), the 
parameter   is assumed as a free 
parameter to be adjusted in order to 
obtain the agreement with the 

experimental charge density 
distribution. After introducing the form 
of )(rRnl  with a harmonic oscillator 

size parameter b  in Eq. (2), an 
analytical form for the ground state 
CDD of the pf 21   shell nuclei is 
expressed as 
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The mean square charge radius (MSR) 
of the considered 1f-2p shell nuclei can 
be written as: [2, 3]  





0

42 )(
4

drrr
Z

r c


                    (4)                                                                                                          

The normalization condition of the 
)(rc is given by [2, 3]  





0

2)(4 drrrZ c                           (5)                                                                                                          

And the corresponding MSR is 

}
30

2

9
{22

ZZ
br


                      (6)                                                                                                         

The central )0( rc  is obtained from 

Eq. (3) as 
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The parameter   can be determined 
from the central CDD of Eq. (6) as 

 )0(5
3

2 323
cb                       (8)                                                                                                          

In Eq. (8), the values of the central 
density, )0(c , are taken from the 

experiments while the harmonic 
oscillator size parameter b is chosen in 
away so that to reproduce the 
experimental root mean square charge 

radii 
21

exp

2r  of the considered nuclei.  

The experimental charge density 
distribution of the FB is given by [24].  
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)/(0 Rrj   denoted the Bessel 

function of order zero. 
 
The PMD ),(kn  for the pf 21  shell 
nuclei is studied by using two distinct 
methods. In the first method, it is 
determined by the shell model using 
the single-particle harmonic oscillator 
wave functions in momentum 
representation and expressed as: 
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while in the second method, the )(kn  
can be determined by the CDFM, 
where the mixed density is given by 
[2,3] 
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is the density matrix for Z  protons 
uniformly distributed in the sphere 
with radius x  and density 

3
0 4/3)( xZx   . The Fermi 

momentum is defined as [2, 3] 
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and the step function ,  in Eq. (12),  is 
defined by 
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According to the density matrix 
definition of Eq. (11), one-particle 
density )(r  is given by its diagonal 
element as [21, 22] 

dxrxfrrr xrrcc 

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In Eq. (15), )(rx  and 
2

)(xf  have 

the following forms [2, 3] 
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The weight function 
2

)(xf  of          

Eq. (17), determined in terms of the 
ground state ),(rc  satisfies the 

following normalization condition [2, 
3] 
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On the basis of Eq. (15), the PMD 
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with normalization condition 
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while the experimental weight 
functions for 70Ge and 72Ge determined 

the two- parameter Fermi (2PF) and 
for 74Ge and 76Ge the Fourier- Bessel 
(FB), thus, yields respectively. 
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where the values of parameters c, z  

and a  in above equations are taken 

from experimental data [24] while the 

constant  0  is determined from the 

normalization of Eq. (5).  
   The elastic monopole charge form 
factors )(qFCO  of the target nucleus 

are also expressed in the CDFM as [2, 
3]: 
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Inclusion of the correction due to the 
finite nucleon size )(qf fs and the 
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center of mass correction )(qfcm in the 

calculation requires multiplying the 
form factor of Eq. (25) by these 
corrections 
Here, )(qf fs is considered as free 

nucleon form factor which is assumed 
to be the same for protons and neutrons 
[25]   

4
43.0 2

)(
q

fs eqf


                                 (27) 

                                                                                                                                                                         
     The correction )(qfcm remove the 

spurious state arising from the motion 
of the center of mass when shell model 
wave function is used and is given       
by [25]   

A
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Multiplying the right hand side of Eq. 
(26) by these corrections yields: 
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     It is important to point out that all 
physical quantities studied above in the 
framework of the CDFM such as )(kn

and )(qFCo , are expressed in terms of 

the weight function
2

)(xf . In the 

previous work [2, 3], the weight 
function was obtained from the NDD, 
extracted by analyzing elastic electron-
nuclei scattering experiments. In the 
present work, the theoretical weight 

function 
2

)(xf is expressed, by 

introducing the derived CDD of Eq. (3) 
in to Eq. (17), as 
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Result and discussion 
     In this study, the proton momentum 
distribution )(kn and elastic electron 
scattering form factors, F(q) are 
calculated by using CDFM, for some 
even 2p-1f shell nuclei, (such as:  70Ge, 
72Ge, 74Ge and 76Ge)  isotopes.  The 
distribution )(knCDFM of Eq. (21) was 
calculated by means of the CDD which 
was obtained firstly from theoretical 
consideration, like in Eq. (3). And then 
secondly from experimental data (such 
as 2PF for 70Ge and 72Ge [24] and FB 
for 74Ge   and   76Ge [10]).    The   size  

 
parameters b is choice in such a way so 
as to imitate the experimental root 
mean square (rms) charge radii of 
nuclei. The values of  are determined 

by Eq. (8). The values of b  and              
(  , ) simultaneously with value of 

the central densities )0(exp and the 

root mean square charge radii  2/1
exp

2 r   

for 70Ge, 72Ge, 74Ge and 76Ge nuclei 
are present  in Table 1 and 2. 
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Table 1:  The value of various parameters employed to CDD. 
 

Nucleus 
 

Type of CDD 
[10] 

)0(exp  

(fm-3) [10] 
PW eq.(7) 

2/1
exp

2  r  

( fm ) [10] 

70Ge
 

FB 0.07609876 
4.043 

 
72Ge FB 0.07443733 4.060 

74Ge FB 0.07260928 4.075 

76Ge FB 0.07106188 4.081 

 
Table 2:  Calculated parameters used in Eq. (3), To calculate CDD and occupation number 

in 1f-2p of nucleus and the calculated 
2/12

calr   . 

 
Nucleus 

 

 
b 
 
 
 


 

 


 

Occupation 
No. of 2s 

)2(   

Occupation 
No. of 1f 

  

Occupation 
No. of 2p 

)20(  Z

 

2/12
calr   

(6) 

70Ge 
 

2.137 
 

0.5747450 
 

10.8 1.425255 10.8 1.774745 4.067287 

72Ge 
2.1459 

 0.6011081 10.9 1.3988819 10.9 1.7011181 4.050529 

74Ge 2.150 0.6529107 11 1.3470893 11 1.6529107 4.073133 

76Ge 2.161 0.6695636 11.04 1.3304364 11.04 1.6295636 4.079458 

    
In Fig. 1, explore the dependence of 
the CDD (in 

3fm ) on r  (in fm ) for 
70Ge [Fig. 1(a)],  72Ge [Fig. 1(b)], 74Ge 
[Fig. 1(c)] and 76Ge [Fig. 1(d)] nuclei. 
The solid and dotted curves are the 
measured charge density distributions 
of the treated nuclei by using Eq. (3) 
when 0  and 0 , respectively 
while the solid circles correspond to 
the experimental data [24]. It is 

noticeable that the dotted curves 
distribution are poor agreement with 
the experimental data, particular for 
small r. Introducing the parameters 
and  (i.e., taking into account the 
higher orbitals) into our calculations 
leads to a good agreement with the 
experimental data as demonstrated by 
the solid curves.   
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Conclusions 
     The (PMD) and elastic electron 
scattering form factors, calculated in 
the framework of the (CDFM), are 
expressed by means of the weight 

function
2

)(xf .  The weight function, 

which is connected with the local 
density )(r , was determined from 
experiment and from theory. The 
feature of the long-tail behavior of the 
(PMD) is obtained by both theoretical 
and experimental weight functions, 
which is in agreement with the other 
studies [2, 3, 26, 27] and is related to 
the existence of high densities )(rx in 

the decomposition of Eq. (15), though 
their weight functions are small. The 
experimental form factors for elastic 
electron scattering from 70Ge, 72Ge, 
74Ge and 76Ge nuclei are well 
reproduced by the monopole form 
factors. It is noted that the theoretical 
(CDD) of Eq. (3) employed in the 
determination of the theoretical weight 
function of Eq. (30) is capable of 
reproducing information about the 
(PMD) and elastic form factors.   
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