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Abstract

The proton momentum distributions (PMD) and the -elastic
electron scattering form factors F(q) of the ground state for some
even mass nuclei in the 2p-1f shell for °Ge, “Ge, "*Ge and °Ge are
calculated by using the Coherent Density Fluctuation Model (CDFM)
and expressed in terms of the fluctuation function (weight function)
IF(x)|>. The fluctuation function has been related to the charge
density distribution (CDD) of the nuclei and determined from the
theory and experiment. The property of the long-tail behavior at high
momentum region of the proton momentum distribution has been
obtained by both the theoretical and experimental fluctuation
functions. The calculated form factors F (q) of all nuclei under study
are in good agreement with those of experimental data throughout all
values of momentum transfer q.
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Introduction

The study of  momentum
distribution is important tool for
studying the ground state properties of
nuclei, especially the momentum
distribution of protons [1]. This is
measured in the framework of the
coherent density fluctuation model
(CDFM), which is exemplified by the
work of Antonov et al. [2, 3]. There is
no method for directly measuring the
proton momentum distribution PMD in

nuclei. The quantities that are
measured by particle-nucleus and
nucleus-nucleus collisions are the cross
sections of different reactions, and
these contain information on the PMD
of target nucleus. The experimental
evidence obtained from inclusive and
exclusive electron scattering on nuclei
establish the existence of long- tail
behavior of the PMD at high
momentum region (k > 2 fm™) [4-6].
The mean field theories cannot
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describe correctly the form factor F(q)
and the PMD simultaneously [7] and
they exhibit a steep- slope behavior of
the PMD at high momentum region. In
fact, the PMD depends a little on the
effective mean field considered due to
its sensitivity to the short rang and
tensor nucleon-nucleon correlations [7,
8] which are not included in the mean
field theories. In the CDFM, the local
charge density distribution (CDD) and
the PMD are simply related and
expressed in  terms of  an
experimentally obtainable fluctuation
function (weight function) [f(x)]%. A lot
of experimental and theoretical work
on elastic and inelastic electron
scattering at different energies has
provided detailed information on the
charge density distribution of the
nuclear ground state and on the energy,
strength, and quantum numbers of the
excited states produced by single
particle or collective excitation
mechanisms [9-12]. The interest in
charge densities result from that, they
can provide more detailed information
for the internal structure of nuclei,
because they are directly related to the
wave functions of protons that is
important keys for many calculations
in nuclear physics [13, 14]. There are
several theoretical methods used to
study elastic  electron- nucleus
scattering, such as the plan-wave Born
approximation (PWBA), the eikonal
approximation and the phase-shift
analysis method [15-19]. The PWBA
method can give qualitative results and
has been used widely for its simplicity.
To include the Coulumb distortion
effect, which is neglected in PWBA,
the other two methods may be used. In
the last few years, some theoretical
studies of elastic electron scattering off
exotic nuclei have been performed.
Wang et al. [15, 16] studied such
scattering along some isotopic and
isotonic chains by combining the
eikonal approximation with the
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relativistic  mean  field theory.
Karataglidis and Amos [18] have
studied the elastic electron scattering
form  factors, longitudinal and
transverse, from exotic (He and Li)
isotopes and from B nucleus using
large space shell models. Al-Rahmani
and Hussien [20] have studied the
CDD and elastic electron scattering
form factors of some 2s-1d shell nuclei
using the PWBA and demonstrated
that the inclusion of the higher 1f-2p
shell in the calculation leads to
produce a good result in comparison
with those of the experimental data.
Hamoudi et al. [21] have been
calculated elastic electron scattering
form factor (EESFF) and the nucleon
momentum distribution (NMD) of the
ground state for p-shell nuclei with

Z=N such as (°Li, "’B, *C and "N

nuclei). Besides, the weight functions
have expressed in terms of nucleon
density distribution of the nuclei and
the coherent density fluctuation model
has expressed in term weight function
f(x)? and measured from the
experiment and the theory. Their
results appeared a good agreement
with the experimental results. AL-
Rahmani A.A. [22] have been
calculated the G.S. elastic charge form
factors and proton momentum
distribution for the upper region of the
2S-1d shell nuclei like (*°CL, *’CI and
39K). At the same year, also, AL-
Rahmani A.A. [22] have measured the
nucleon momentum distributions and
elastic electron scattering form factor
of the ground state for some odd 2s-1d
shell nuclei like (“’F,”Mg,*’Al and
*Si) by using the coherent density
fluctuation model and expressed in
terms of the fluctuation function
(weight function)|f(x)]. In addition,
through her works she found that the
inclusion of the quadrapole form
factors Fc; (q) in all nuclei under study
which  was  described by the
undeformed 2S-1d shell nuclei, was
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essential for obtained a notable
accordance between the experimental
and theoretical form factors. It is
important to point out that all above
calculations obtained in the framework
of CDFM proved a high momentum
tail in the PMD. Elastic electron
scattering from *°Ca nucleus was also
investigated in [23], where the
calculated elastic differential cross
sections ds/dQ are in good agreement
with those of experimental data.

The aim of the present work is to
derive an analytical expression for the
CDD applicable throughout all 2p-1f
shell nuclei based on the use of the
single particle harmonic oscillator
wave functions and the occupation
numbers of the states. The derived
form of the CDD is employed in
determining the theoretical weight

function|f(x)|2 which is then used in

the CDFM to study the PMD and
elastic scattering form factors F(q) for
some 2p-1f shell nuclei for 70Ge, 72Ge,
"Ge and "°Ge isotopes. It is found that
the theoretical weight function based
on the derived CDD is capable to give
information about the PMD and elastic
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charge form factors as do those of
experimental data.

Theory

The charge density distribution of
one —body operator can be written
respectively, as [21]

1 2
pe(r) = E;gnl 221+ DRy (N]* (1)

where p.(r) is the charge density
distribution  of nuclei, ¢, 1is the
proton occupation probability of the
state nl (£, =0 or 1 for closed shell
nuclei and 0 < ;< 1 for open shell
nuclei) and R, (r) is the radial part of

the single-particle harmonic oscillator
wave function. To derive an explicit
form for the CDD of 1f —2p shell

nuclei, it is supposed that there is a
core of filled 1Is and 1p and 1d shells
and the proton occupation numbers in
2s,1f and 2p shells are equal to
2-a),f and (Z-20-p+0a),
respectively, for (°Ge, *Ge, "*Ge and
"5Ge), instead of 2,(Z —20) and 0 as in
the simple shell model. Using this
assumption in Eq. (1), we get:-

1
po(r) = E{Z\Rm(r)\z +6|R, (D +10[R, (D + (2= @)|Ry|” + BR[| +(Z =204+ a)‘RZl‘z}

where Z is the atomic number of
nuclei, the parameter « characterizes
the deviation of the proton occupation
numbers from the prediction of the
simple shell model (a=0), the
parameter [ is assumed as a free
parameter to be adjusted in order to

obtain the agreement with the
_r? / b2 3

)

experimental charge density
distribution. After introducing the form
of R, (r) with a harmonic oscillator
size parameter b in Eq. (2), an

analytical form for the ground state
CDD of the 1f —2p shell nuclei is

expressed as

e 15 r, 4 r,
PN =—5 0 -Ja+ 5 a+2(2=20=HIE) +[4-2a-2(2=20-HIC)

8
105

4 4 r,
+[—,3+E(Z—20—ﬂ)+§0!](6) }

€)
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The mean square charge radius (MSR)

of the considered 1{-2p shell nuclei can

be written as: [2, 3]
47

(y=—-[ p.(n)r'dr (4)
Z 0

The normalization condition of the
p.(I)is given by [2, 3]

Z= 4;szc(r)r2dr )
0
And the corresponding MSR is
9 30 «
(r)=p"t -+ (6)

The central pc(r = 0) is obtained from

Eq. (3) as
P:(0) = {5‘5“} ©

The parameter o can be determined
from the central CDD of Eq. (6) as

2
=2 b2, ()] (8)
In Eq. (8), the values of the central

density, p.(0), are taken from the

5—§a+{1—1a
2 3

1

72_3/2b3

3

_ b B (220~ P

while in the second method, the n (k)

can be determined by the CDFM,
where the mixed density is given by
[2,3]

ji(ke ([
kF()|_ |

Py (F,F) =3p,(X)

is the density matrix for Z protons
uniformly distributed in the sphere
with  radius X and  density
Po(X)=3Z/4nx>. The Fermi

momentum is defined as [2, 3]

5 X5
+§(Z —20—ﬂ)}(5)

420, —f(Z—zo—ﬂ)}&)“
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experiments while the harmonic
oscillator size parameter b is chosen in
away so that to reproduce the

experimental root mean square charge
. a\V2
radii <r >

exp
The experimental charge density

distribution of the FB is given by [24].

of the considered nuclei.

a,j,(omr/R) for r<R
p(r) = Z )

0 for r>R

jo(omr/R)  denoted the Bessel

function of order zero.

The PMD n(k), for the 1f —2pshell
nuclei is studied by using two distinct
methods. In the first method, it is
determined by the shell model using
the single-particle harmonic oscillator
wave functions in  momentum
representation and expressed as:

(10)
a}( )
p(F,7) = j|f(x)| p (P (11)
since
r’|J
(12)

ke (X)= (3”2 pO(X)J E% V= (9” Z) (13)

and the step function @, in Eq. (12), is
defined by
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1, >0
a(y) = {0 L . (14)

According to the density matrix
definition of Eq. (11), one-particle
density p(r) is given by its diagonal
element as [21, 22]

o0

2.0 =01 e = [| O p (00X (15)

0
In Eq. (15), p,(r) and |f(x)|2 have
the following forms [2, 3]

P, (1) = p, () 0(x—F]) (16)
2_ -1 dpc(r)
| () = ar D

The weight function | f (x)|2 of
Eq. (17), determined in terms of the
ground state p (r), satisfies the

following normalization condition [2,
3]
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]O|f(x)|2dx=1 (18)

and holds only for monotonically
do. (r
decreasing p,(I), i.e. pdC—() <0.
r

On the basis of Eq. (15), the PMD
n(k), is given by [2, 3]

n(k) = T|f(x)|2nx(k)dx, (19)
where

n, (k) =§7zx30(kF(x)—‘lZ‘)

(20)

is the Fermi-momentum distribution of
the system with density p,(x). By
means of Egs. (17), (19) and (20), an
explicit form for the PMD is expressed
in terms of p_(I)[2, 3] as

2 Vv /k 6
CDFM 4\ 4 5 \ \
n K:lp.D=|—| =x|6| p.(X)XdX—| — | p.|— 21
([p])(3 - {p() <) Pel 2D
with normalization condition the two- parameter Fermi (2PF) and
- d’k for *Ge and "°Ge the Fourier- Bessel
Z= I n (k) 27r) (22) (FB), thus, yields respectively.

while the experimental weight
functions for "°Ge and "*Ge determined

3 xc\72
‘f(x)‘ipp :47;)(—'0;00(1+e 2 j exp(ﬁ

(23)

4rx® | Cos(unx/R) Sin(unx/R
ol =3 | COUM/R)_SInLTR)
x(vmx/R)

~ 37 " X
where the values of parameters c, z
and @, in above equations are taken
from experimental data [24] while the
constant O, is determined from the

normalization of Eq. (5).

The elastic monopole charge form
factors F.,(q) of the target nucleus
are also expressed in the CDFM as [2,
3]:

} 24)

Feo (@) = 5 [|F OO F @00k (29)

Where the form factor of uniform
charge density distribution is given
by [2, 3]
3Z | sin(Qgx)

F(q)= 22| Sn) s | (26
@ = 2 0 oo | 26)
Inclusion of the correction due to the
finite nucleon size f,(q)and the
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center of mass correction f_, (Q)in the

calculation requires multiplying the
form factor of Eq. (25) by these
corrections

Here, f (q)is considered as free

nucleon form factor which is assumed
to be the same for protons and neutrons
[25]

—043q
f fs (q) =€ ! (27)

The correction f_, (q)remove the

spurious state arising from the motion
of the center of mass when shell model
wave function is used and is given

by [25]
in

i (g)=e (28)
Multiplying the right hand side of Eq.
(26) by these corrections yields:

11

87x°* 16x‘e 7

2
|f(X)| _Wpc

X)————
3Zb°n 2

Result and discussion
In this study, the proton momentum
distribution n(k)and elastic electron

scattering form factors, F(q) are
calculated by using CDFM, for some
even 2p-1f shell nuclei, (such as: 70Ge,
Ge, "Ge and "°Ge) isotopes. The
distribution n®™ (k)of Eq. (21) was
calculated by means of the CDD which
was obtained firstly from theoretical
consideration, like in Eq. (3). And then
secondly from experimental data (such
as 2PF for °Ge and *Ge [24] and FB
for “Ge and "°Ge[10]). The size

5

ZOHE(Z -20- /)
4 X,
+H4-2a —(Z=20-P)()

4 2 2 X,
_+§ﬂ+g(2—20—ﬂ)+§a}(6) |
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Fon( = [ COPF@X00K  @) F@
29)

It is important to point out that all
physical quantities studied above in the
framework of the CDFM such as n(k)

and F,(q), are expressed in terms of

the weight functi0n|f(x)|2. In the

previous work [2, 3], the weight
function was obtained from the NDD,
extracted by analyzing elastic electron-
nuclei scattering experiments. In the
present work, the theoretical weight

function |f(x)|2 is expressed, by

introducing the derived CDD of Eq. (3)
in to Eq. (17), as

(30)

parameters b is choice in such a way so
as to imitate the experimental root
mean square (rms) charge radii of
nuclei. The values of « are determined

by Eq. (8). The values of b and
(a, ) simultaneously with value of
the central densities Py (0) and the
root mean square charge radii (r®).’

for 7OGe, 72Ge, "Ge and "°Ge nuclei
are present in Table 1 and 2.
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Table 1: The value of various parameters employed to CDD.

2 1/2
Nucleus Type of CDC Pexp (0) <r ~ exp
[10] (fm™®) [10] ( fm) [10]
PW eq.(7)
70
Ge FB 0.07609876 4.043
2Ge FB 0.07443733 4.060
"Ge FB 0.07260928 4.075
“Ge FB 0.07106188 4.081

Table 2: Calculated parameters used in Eqg. (3), To calculate CDD and occupation number

2 _1/2
in 1f-2p of nucleus and the calculated < I~ > .
: Occupation | Occupation
b o ﬁ Occupation N Pf B No. of 2p <22
Nucleus No. of 2s 00 (Z-20-f+a Ca'
2-o) o4 (6)
"Ge 2.137 | 0.5747450 10.8 1.425255 10.8 1.774745 4.067287
7 2.1459
Ge 0.6011081 10.9 1.3988819 10.9 1.7011181 4.050529
"Ge 2.150 | 0.6529107 11 1.3470893 11 1.6529107 4.073133
Ge 2.161 0.6695636 | 11.04 | 1.3304364 11.04 1.6295636 4.079458
In Fig. 1, explore the dependence of noticeable that the dotted curves

the CDD (in fm~) onr (in fm) for
Ge [Fig. 1(a)], "*Ge [Fig. 1(b)], “Ge
[Fig. 1(c)] and "°Ge [Fig. 1(d)] nuclei.
The solid and dotted curves are the
measured charge density distributions
of the treated nuclei by using Eq. (3)
whena #0 anda =0, respectively
while the solid circles correspond to
the experimental data [24]. It is

distribution are poor agreement with
the experimental data, particular for
small r. Introducing the parameters «
and g (i.e., taking into account the

higher orbitals) into our calculations
leads to a good agreement with the
experimental data as demonstrated by
the solid curves.
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CDD(fm?)

r(fm)
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®) |

2Ge

']
I
1

I o I . I

r(f;'n} ;

Fig. 1: The dependence of the CDD on r for (a)"°Ge, (b)”°Ge, (c)"*Ge and (d)°Ge
nuclei. the solid and dotted curves are the calculated CDD of the treated nuclei by
using Eq. (3) whena #0 anda =0, respectively whereas the solid circles are those
fitted to the experimental data of Fourier-Bessel (FB) CDD [24].

In Fig. 2, we display the
dependence of the n(k) (in fm’) on k
(in fm™) for "°Ge [Fig. 2(a)], "*Ge
[Fig. 2(b)], "*Ge [Fig. 2(c)], and "°Ge
[Fig. 2(d)] nuclei. The long-dashed
curves correspond to the PMD’s of
Eq. (10) evaluated by the shell model
calculation used the single particle
harmonic-oscillator wave function in
the momentum space. The solid
circles symbols and solid curves
correspond to the PMD’s obtained by
CDFM of Eq. (21) employing the
experimental and theoretical CDD,
respectively. It is evident that the
behavior of the dash distribution
curves estimated by the shell model is
in contrast with distributions imitated
by the CDFM. The significant property

of the long-dashed distribution is the
steep slope mode, when k is increases.
This behavior is in disagreement with
our studies [2, 3, 26, 27] and it is
attributed to the fact that the ground
state shell model wave function given
in terms of Slater determinant does not
take into account the major effect of
the short range dynamical correlation
functions. Hence, the short range
repulsive features of the nucleon-
nucleon force are responsible for the
high momentum behavior of the PMD
[26, 7]. The property of long-tail
behavior obtained by the CDFM,
which is 1 n agreement with the studies
[2, 3, 26, 27], 1s connected to the
presence of high densities p,(r) in

the decomposition of Eq. (15), though
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their fluctuation functions|f(x)|2 are

small. The PMD of (°Ge, *Ge)
nucleus present in Figs. 2 (a) and 2 (b),
respectively, shows quite  well
agreement between the calculated data
(the solid curve) and the experimental
data (solid circles) up to k = 2.2 fm™,
while beyond this region they shows
an explicit deviation between them.
Besides, This deviation in PMD at
large k may be interpreted by the
deviation between the calculated
charge density distribution of the ("°Ge
and “Ge) nuclei and those of the
experimental two parameters Fermi by
used the charge density equation:

p(r)=p,/(1+exp((r—C)/2)) where
their parameter is listed in Table 3
[24]. Since this deviation affect greatly

T T 1'!

PND)

s Bapew ki Hebiow Ealuns Thiaue Bboty Jibicy Filegs |

(]

]

. (c)

PMD(fv)
i s e & #
bbb oboee B b Rl Rty Rk | ""1)"

1

e s !

kif')
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the PMD’s due to the dependence of
the PMD on the employed CDD.
The PMD of ("*Ge) nucleus present in
Fig. 2(c) shows a good agreement
between the experimental data (solid
circles symbols) and calculated data
(solid curves), but there is slightly
deviation between them. This deviation
is in the two regions at (1.8 fm* <k <
2.4 fm™) and (2.6 fm™* <k < 4.3 fm™),
respectively. The PMD of ("°Ge)
nucleus present in Fig. 2 (d) shows a
good  agreement  between  the
experimental data  (solid circles
symbols) and calculated data (solid
curves), but there is slightly deviation
between them. This dewiation is in the
regions at (2.4 fm? <k < 4.3 fm™).

PMD(f¥)
Sl Do i R By fabere Bty Bibncy Triawer Rabacec |

PMD(fr?)

" I .

L] L

sl sl sooel sl winnd siemd sl ssad sl g

f £ 3

k(fm®)

Fig. 2: The dependence of PMD on k for (a)°Ge, (b)"Ge, (c) "“Ge and (d)"°Ge nuclei. The
long-dashed curves are the calculated PMD of Eqg. (10) obtained by the shell model
calculation using the single particle harmonic oscillator wave functions in the momentum
representation. The solid circles symbols and solid curves distributions are the calculated
PMD obtained in terms of the CDFM of Eq.(21) using the experimental 2PF of Eq.(23)
and theoretical weight function for °Ge and "“Ge of Eq. (30), respectively, and for "“Ge and
"®Ge by using the experimental FB of Eq.(24) and theoretical weight function respectively.
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Table 3: The value of various parameters employed to CDD of 2PF for “°Ge and "“Ge.

)
Nuclei Type of c(fm) z(fm) <r2 >i (fm)
CDD [24] (24) (24) 24
"Ge 2pF 4.44(2) 0.585(7) 4.07(2)
2Ge 2pF 4.45(2) 0.573(7) 4.05(3)
The elastic electron scattering diffraction minima and maxima of the

charge form factors for the considered
nuclei are calculated in the framework
of the (CDFM) through introducing the
theoretical weight functions |f(X)|2 of
Eq. (30) into Eq. (29). In Fig. 3, we
present the dependence of the form
factors F(q) on the momentum transfer
q (in fm™) for "°Ge [Fig. 3(a)], *Ge
[Fig. 3(b)], *Ge [Fig. 3(c)] and "°Ge
[Fig. 3(d)] nuclei, where the solid

circles are representing experimental
data [10]. In Fig. 3(a) °Ge and

Fig. 3(b) Ge shows that the

_: E ! ' ! (a) : 3

i "Ge 3

ot E- _E

= f = 3

== E
',:__--;.x.E. ""'-"\, =
= f 3 3
&'Z-Hl E— - - -E
-l.-::'E- » -E
':—:Elg- -E
i = E
(¥ :E_ -i

Fla)P

T vonnd vovd o e e vond vl el el el sl

q(fm-)

considered nuclei are reproduced in the
correct places. While in Fig. (3¢) "*Ge
and Fig. (3d) "°Ge the third diffraction
minimum of experimental data [10] is
shifted slightly by about q = 0. 5 fm™
from the calculated one demonstrated
by the solid curve which is located at q
=2.5 fm™. In all these Fig. 3, both the
behavior and the magnitudes of the
calculated form factors of these nuclei
are in reasonable agreement with those
of the experimental data.

if | T T T o
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Fig. 3: Dependence of the charge form factors on q for (a) “Ge, (b) "“Ge, (c) “Ge and
(d) °Ge nuclei. The solid curve is the calculated F(q) of the Eq. (25). The filled circle
symbols are the experimental data, taken from Ref. [10].
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Conclusions

The (PMD) and elastic electron
scattering form factors, calculated in
the framework of the (CDFM), are
expressed by means of the weight

functi0n| f (X)|2. The weight function,

which is connected with the local
density p(r), was determined from

experiment and from theory. The
feature of the long-tail behavior of the
(PMD) is obtained by both theoretical
and experimental weight functions,
which is in agreement with the other
studies [2, 3, 26, 27] and is related to
the existence of high densities p, (r)in

the decomposition of Eq. (15), though
their weight functions are small. The
experimental form factors for elastic
electron scattering from "Ge, "Ge,
"Ge and "°Ge nuclei are well
reproduced by the monopole form
factors. It is noted that the theoretical
(CDD) of Eq. (3) employed in the
determination of the theoretical weight
function of Eq. (30) is capable of
reproducing information about the
(PMD) and elastic form factors.
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