Effect of thickness on the structure, morphology and A.C

conductivity of Bi₂S₃ thin films

Bushra A. Hasan and Hiba H. Issa

Department of Physics, College of Science, University of Baghdad

E-mail: bushra_abhasan@yahoo.com

Abstract

Thin films samples of Bismuth sulfide Bi_2S_3 had deposited on glass substrate using thermal evaporation method by chemical method under vacuum of 10^{-5} Toor. XRD and AFM were used to check the structure and morphology of the Bi_2S_3 thin films. The results showed that the films with law thickness <700 nm were free from any diffraction peaks refer to amorphous structure while films with thickness≥700 nm was polycrystalline. The roughness decreases while average grain size increases with the increase of thickness. The A.C conductivity as function of frequency had studied in the frequency range (50 to $5x10^6$ Hz). The dielectric constant, polarizability showed significant dependence upon the variation of thickness.

Key words

Dielectric properties, Bismuth Sulfide, Semiconducting Materials.

Article info.

Received: Nov. 2016 Accepted: Jan. 2017 Published: Jun. 2017

تأثير السمك على التركيب، الهيئة و التوصيلية الكهربائية المتناوبة لاغشية Bi₂S₃ الرقيقة بشرى عباس حسن و هبة حسين عيسى قسم الفيزياء، كلية العلوم، جامعة بغداد

الخلاصة

حضرت اغشية من المركب ${\rm Bi}_2 {\rm S}_3$ باستخدام التبخير الحراري وتحت فراغ مقداره Toor 10^{-5} Too طبو غرافية وتركيب الاغشية المحضرة باستخدام مجهر القوى الذرية وحيود الشعة السينية. اظهرت النتائج ان الاغشية ذات السمك الواطيء < 700 نانوميتر كانت عشوائية التركيب بينما اظهرت الاغشية ذات السمك الاغشية ذات السمك الاغشية ذات السمك الاغشية ذات السمك الاغشية المحضرة باستخدام مجهر القوى الذرية وحيود الشعة السينية. المحضرة المحضرة باستخدام مجهر القوى الذرية وحيود الشعة السينية. اظهرت النتائج ان الاغشية ذات السمك الواطيء < 700 نانوميتر كانت عشوائية التركيب بينما اظهرت الاغشية ذات السمك ≥ 700 نانوميتر كانت معنوانية المحضرة قلت فيما ازداد حجم الحبيبة مع زيادة السمك. تم دراسة التوصيلية المتناوبة كدالة للتردد ضمن المدى (50 هيرتز الى 5 ميكاهيرتز). اظهركل من ثابت العزل والاستقطابية اعتمادا ملحوظا على تغير السمك.

Introduction

V-VI group are semiconductors compound which are very important because materials of their photoconductivity photosensitivity, and thermoelectric power [1, 2]. Bismuth sulfide (Bi_2S_3) is an important member of V-VI group of compound semiconductor and it is a direct band gap material. The earlier researches [3] pointed out band gap of bulk Bi₂S₃ is 1.3 eV. The more recent value of band gap is measured to be in the range 1.3-1.7 eV [4], which lies in the visible solar energy spectrum and hence it estimated to have large absorption coefficient [5]. Thus it is an ideal candidate for solar cells and photodetectors visible in the region. wavelength Due to its significant thermoelectric effect, this material is important in thermoelectric applications [6]. Bi_2S_3 is a layered semiconductor that crystallizes in the orthorhombic system and is iso structural to antimony sulfide (Sb_2S_3) and selenide (Sb₂Se₃) [3]. Bi₂S₃ thin films have been referred to be prepared by many workers following different chemical routes and using different complexing agents and sulfide sources [7-9]. Recently considerable researches have been carried out on the optical and structural properties of Bi₂S₃ thin films but still now very little is known about the dielectric properties. In this work we shed alight on the influence of thickness on the dielectric properties of Bi_2S_3 thin films prepared by thermal evaporation under vacuum. The results of preparation technique of Bi₂S₃ via thermal evaporation method had reported. Thin films of Bi₂S₃ had studied for their structural, morphology and A.C conductivity.

Theoretical part

The nature of the conduction mechanism in a material can be provided from A.C conductivity, the electrical conductivity had measured as a function of the frequency (ω) where $\omega = 2\pi f$ is the angular frequency and f is the frequency of an alternating electric field. The total conductivity σ_{tot} at a certain frequency and temperature is defined as:

$$\sigma_{tot} = \sigma_{a.c}(\omega) + \sigma_{d.c} \tag{1}$$

where $\sigma_{d,c}$ is the D.C conductivity which depends on temperature and dominate at low frequencies, while σ_{ac} is the A.C. conductivity which is weaker temperature dependence than σ_{dc} and dominate at high frequency and nondependent temperature then, the empirical relation of frequency dependence conductivity on a.c $(\sigma_{a,c}(\omega))$ has been observed in many amorphous semiconductors and insulators both inorganic and polymeric material has the form:

$$\sigma_{a,c}(\omega) \propto \omega^s \tag{2}$$

$$\sigma_{a.c}(\omega) = A_1 \omega^s \tag{3}$$

where: A_1 is constant, then we can re-write the Eq. (1) as follows:

$$\sigma_{tot}(\omega) = A_I \omega^s + \sigma_{d.c} \tag{4}$$

and (s) is a function of frequency and is determined from the slope of a plot $\ln \sigma_{ac}(\omega)$ versus $\ln(\omega)$ then [6]:

$$s = \frac{d[Ln\sigma_{a.c}(\omega)]}{d[Ln(\omega)]}$$
(5)

The nature of polarization mechanisms in dielectric can obtained from A.C conductivity (σ_{ac} (w)) measurements as well as information the electrodes about capacitance interface electronic and amount conductivity present. Indeed, so wide spread is this phenomenon that appears to be a common feature of the amorphous non metallic state. This phenomenon has variously been a attributed to relaxation processes caused by the motion of electrons or ions, hopping or tunneling between equilibrium states.

The A.C conductivity (σ_{ac}) can be calculated using the following relation:

$$\sigma_{a.c} = \frac{t}{R.A} \tag{6}$$

where t is thickness of film R is Resistance of film, A is Effective area for capacitance.

The dielectric constants (ε_1 , ε_2) can be calculated using the following relations:

$$\varepsilon_1 = \mathbf{C} \cdot \mathbf{t} / \varepsilon_0 \cdot \mathbf{A} \tag{7}$$

where C is Capacitance, ϵ_0 is the Permittivity of free space =8.854x10⁻¹⁴ (F/cm).

$$\varepsilon_2 = t / w \varepsilon_0 R A = \sigma_{ac} / w \varepsilon_0$$
(8)

There are three mechanisms of charge transport can contribute the frequency dependent A.C conductivity ($\sigma_{a.c}$ (ω)) as follows:

a- Transport by excited carriers to the extended state near conduction or valence bands, $\sigma_{a.c}$ (ω) are given by:

 $\sigma_{a.c}(\omega) = \sigma_0 / (1 + \omega^2 \tau)$ (9)

where $\sigma_0 = ne^2 \tau / m^*$

m* is the electron effective mass, n is the carrier density and e is the electron charge.

b- Transport by carriers excited into localized states at the edges of the valence or conduction bands. A $\sigma_{a.c}(\omega)$ follows the formula.

$$\sigma_{\rm ac} = \cos\omega [\ln\{\frac{1}{\omega\tau})]^4 \tag{10}$$

where $\omega < 1/\tau$.

c- Hopping transport by carriers with energies near the Fermi level, according to this mechanism the $\sigma_{a,c}(\omega)$ given by:

$$\sigma_{a.c}(\omega) = 1/3 \pi e^2 k_B T [N(E_F)]^2 \overline{\alpha}^{-5} \omega$$

$$[1n(1/\omega\tau)]^4 \qquad (11)$$

where, N (E_F) is the density of state near Fermi level and $\overline{\alpha}$ is the decay factor $\overline{\alpha}^{-1} = r_p$ is polaron radius.

In the past many theories had postulated to explain A.C conduction. It is supposed that the dielectric loss occurs because the carrier motion is regarded as localized within pairs of sets. Two distinct processes have been proposed for interpretation these relaxation mechanisms, namely quantum mechanical tunneling (QMT), in this mechanism the A.C conductivity is linearly dependent on temperature and the exponent s is frequency dependent, which it is independent on temperature.

The second mechanism is called correlated barrier hopping (CBH) when the electrons hope over the potential barrier between two sites, the A.C conductivity resulted from. Hopping between defect states or dangling bonds $(D^+ D^-)$. In CBH the $\sigma_{ac}(\omega)$ is exponentially dependent on temperature, and exponent approaches unity when the temperature approaches zero [10].

Experimental part

Alloy of Bi_2S_3 was prepared by quenching technique. melt The materials (5N pure) in accordance with their atomic weight percentage had weighed using sensitive balance with high accuracy 10^{-4} . The weighed materials had sealed in evacuated $(\sim 10^{-2} \text{ mbar})$ quartz ampoules and heated up to 1273K in a rocking furnace at a heating rate of 3-4 ^oC/min. Ampoules were frequently rocked at the highest temperature for 5 hours. The quenching of the ampoules was conducted in water as soon as the ampoules is taking out from the furnace. The structure type of the bulk alloys was cheked by the x-ray diffraction technique when compared with ASTM cards. Thin films of different thickness from Bi₂S₃ alloy were deposited on glass substrates by thermal evaporation technique [Vacuum coating unit EDWARD Model].

Results and discussion

The x-ray spectra of Bi_2S_3 thin films prepared at various thicknesses is shown in Fig.1 The prepared Bi₂S₃ thin films for law thicknesses (100, 300, 500nm) declared no peaks and indicated that the structure was amorphous. When thickness increased to 700nm, the spectra revealed many small peaks located at $2\theta=22.4$, 27.5° and 38.1[°] corresponding to diffraction planes (220), (311) and (014), which related with poly crystalline, as shown in Fig.1. This result is coinside with the results reported bv other investigators [11-13]. The structural transformation from amorphous state of the prepared sample to crystalline state is also evident in the optical properties [14], where the absorption edge is shifted to a lower wavelength. This behavior may indicate a drop in the optical band gap to lower energies.

Fig. 1: XRD of as deposited Bi_2S_3 thin films with different thicknesses.

The grain size (grain diameter) and average roughness of Bi_2S_3 thin films prepared by thermal evaporation method had measured using AFM with different thicknesses (100, 300, 500 and 700 nm) as shown in Fig. 2. The measured grain size and RMS roughness are given in Table 1. It is clear from the Table 1 that the average grain size increased by increasing the thickness, indeed average grain size increased from 97.5 to 108.5 nm when the thickness increased from 100to 700nm. The roughness of the films showed proceeding decrease with the increasing of thickness, moreover the values of surface roughness had found to decrease from 0.561 to 0.191nm with increasing of thickness from 100 to 700 nm.

88		JJ JJ
t (nm)	Average roughness (nm)	Average grain size (nm)
100	0.561	97.51
300	0.313	103.48
500	0.263	106.40
700	0.191	108.56

Table 1: Average grain size and average roughness for Bi₂S₃ films with different thickness.

Fig. 2: AFM images for Bi₂S₃ films with different thickness.

The exponential factor (s) had obtained from the plotting of Ln ($\sigma_t(\omega)$) versus $Ln(\omega)$ for Bi_2S_3 films with different thickness as shown in Fig. 3, the values of (s) had listed in Table 2. It is evident that (s) value for low thickness (i.e.t=100nm) less than unity as estimated for semiconductor materials which confirmed the hopping mechanism. It is clear that thickness increment from 100 to 500nm increases the conductivity of the prepared samples throughout increases the charge carriers which in turn increases the exponent (s). Table 2 illustrates the values of exponents as function of thickness for Bi_2S_3 . To explain our results one can postulated small polaron (SP) model which is convenient for samples with law thickness while Correlated Barrier Hopping (CBH) model for sample with high thickness. Small Polaron (SP) is the most suitable when the exponent s get to rise, this occurs when more charge carrier are added to the covalent solid resulted in a large degree of local lattice distortion, which form small polaron.

Fig. 3: Variation of $Ln \sigma_{a.c}(w)$ with $Ln(\omega)$ for Bi_2S_3 thin films.

Table 2: The values of s for Bi_2S_3 thinfilms.

Thickness(nm)	S
100	0.104
500	1.201
700	0.809

Fig. 4 and 5 show variation spectrum of stored energy per cycle (ε_1) versus Ln (ω) and energy dissipated per cycle (ε_2) versus Ln (ω) respectively for Bi₂S₃ thin films with different thicknesses. According to Deby's relaxation equations these curves must be symmetrical around w_D, where the angular frequency w_D corresponds to maximum absorption (according to the equation $w_D = 1/\tau$ where (τ) represent the most probable value of a spread of relaxation times. The dielectric constant (ϵ_1) for Bi₂S₃ thin

films with different thicknesses (100, 500 and 700nm) had measured within the employed frequency range $(50-5\times10^6 \text{ Hz})$. It is obviuos that ε_1 exhibit to increase with increasing of thickness of the prepared sample while it decreased with the increasing of frequency to reach lower values, this ascribed to the fact that electrode blocking layer is dominated thus the dielectric behavior is affected by the electrode polarization, while at high frequency the dielectric signal is not affected by electrode polarization, moreover (at frequency =50 Hz) ϵ_1 increased from $(9.4 \times 10^{-4} \text{ to } 1.44)$ when the thickness increased from (100 to 700nm). The increase of ε_1 with the thickness attributed to the increase of capacitance (direct relation according to Eq. (7).

Fig. 5 shows variation of ε_2 with frequency for Bi₂S₃ thin films with different thicknesses (100, 500 and 700nm). The dielectric loss absorption bands appear for thickness 100 and 700 while the spectra of ε_2 for thickness 500 was free from any peaks. Indeed (at frequency =50 Hz) ϵ_2 increased from (1.55x10⁻⁴ to 0.23) when the thickness increased from (100 to 700nm). The increasing of ϵ_2 with the thickness attributed to the conductivity (direct relation according to Eq. (8).

Fig. 4: Variation of ε_1 with Ln (ω) for Bi₂S₃ thin films.

Fig. 5: Variation of ε_2 with Ln (ω) for Bi₂S₃ thin films.

The plot of Cole-Cole diagrams as shown in Fig. 6 give a direct evidence of the existence of multi-relaxation time in for Bi₂S₃ thin films. It had shown that for all Bi₂S₃ thin films the relation between (log ε_1) versus (log ε_2) curves exhibit to give arc of circles having their centers lying below the absicca axis. This confirms the existence of distribution of (τ) in all films. The polarizability (α) had determined by measuring the angles $(\alpha \pi/2)$ which were listed in Table 3. One can notice that the values of (α) shows anon systematic variation with the increasing of thickness (t), the increasing of (α) value resulted from weaken the forces while the decrease of (α) with the increase of (t) results from rise of the forces of the intermolecular [15-17].

Fig. 6: Cole –Cole Diagram of for Bi_2S_3 thin films.

Tuble 5. The values of a for Dl_2S_3 thin films.		
α		
0.277778		
0.544444		
0.211111		

Table 3: The values of α for Bi_2S_3 thin films.

Conclusions

The investigation of the effect of thickness on A.C conductivity for Bi_2S_3 thin films with was performed and manifest results had appeared from this study:-

1- A.C conductivity of Bi_2S_3 thin films increased with thickness and frequency.

2- The values of (ε_1) and (ε_2) significantly influenced by the increase of thickness.

3- Some Bi_2S_3 thin films declared relaxation peak in the high frequency range only.

4- Phase transformation of Bi_2S_3 thin films from amorphous to polycrystalline is responsible about the increase of dielectric constants.

References

[1] C. Ghosh and B. P. Varma, Thin solid films, 60, 1, June (1979) 61-65.

[2] C. Ghosh and B. P. Varma, Solid State Communications, 31, 9 September (1979) 683-686.

[3] J. Black, E. M. Conwell, L. Seigle,
C. W. Spenser, Journal of Physics and Chemistry of Solids, 2 (1957) 240-251.
[4] D. J. Riley, J. P. Waggett, K. G. U.
Wijayantha, Journal of Materials Chemistry, 14, November (2003) 704-708.

[5] L. Cademartiri, R. Malakooti, P. G. O'Brien, A. Migliori, S. Petrov, N. Kherani, G. A. Ozin, Angewandte Chemie International Edition, 20, (2008) 3814-3817.

[6] O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, R.Weissleder, 5, 2 (2006) 118-122.

[7] S. Biswas, A. Mondal, D. Mukherjee, P. Pramanik, Journal of Electrochemical Society, 133, 1 January (1986) 48-52.

[8] P. Pramanik and R. N. Bhattacharya, 127, 9 (1980) 2087.

[9] J. D. Desai and C. D. Lokhande, Materials Chemistry and Physics, 41 (1995) 98-103.

[10] A.R.Von Hipped. Dielectric and Wave, John Wiley and Sons. London, (1954).

[11] O. Rabin, J. M. Perez, J. Grimm,G. Wojtkiewicz, R.Weissleder, NatureMaterials, 5, 2 (2006) 118-122.

[12] B. Zhang, X. C. Ye, W. Y. Hou,Y. Zhao, Y. Xie, Journal of PhysicalChemistry B, 110, 18 (2006) 8978-8985.

[13] L. S. Li, N. J. Sun, Y. Y. Huang,Y. Qin, N. N. Zhao, J. N.Gao, M. X.Li, H. H. Zhou, L.M. Qi, AdvanceFunctional Matererials, 18, 8 (2008)1194-1201

[14] S. Biswas, A. Mondal, D. Mukherjee, P. Pramanik, 133, 1 January (1986) 4852.

[15] K.K. Srivastastava, A.Kumar, O.S.Panwar, K.N.Lakshminarayan, J. of Non. Crys. Solids, 33, 205 (1979).

[16] I.M. El Amwar, A.K.Mohammad,F.F. Hammad, Egypt. J. Chem., 42, 527 (1999).

[17] Zulkifli Ahmad, Polymeric Dielectric Materials, Chapter 1, 2014, 120.