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Abstract Article Info. 

This research studied the nuclear deformation of the 65Cu isotope by employing 

advanced shell model calculations alongside the Hartree-Fock approximation within 

the framework of the fp-shell model space. A detailed analysis of inelastic electron 

scattering was conducted, focusing on both the longitudinal and transverse form 

factors, as well as excitation energies. These calculations were performed using the 

shell model, incorporating elements of the one-body transition density matrix and 

leveraging the full fp-shell space to facilitate the JUN45 interaction. Various 

theoretical wave functions, including the harmonic oscillator (HO), Skyrme Hartree- 

Fock (SLy4), and Wood-Saxon (WS) potentials, were applied, and their results were 

meticulously compared with experimental data.  Furthermore, the potential energy 

surfaces were explored as a function of quadrupole deformation parameters through 

the SLy5 parameterization within the Hartree-Fock approach. Notably, the shell 

model computations were executed using the NushellX@MSU code without 

imposing any constraints on the model space, offering a comprehensive and 

unconstrained insight into the nuclear structure dynamics of 65Cu. Finally, the 

calculated results were compared with the available experimental data. 
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1. Introduction 
There are three essential regards to the shell model (SM) approach to nuclear 

structures: the valence space, the effective interaction, and the computational tools that 

enable the solution of the massive issues involved [1]. The main concept is that protons 

and neutrons in a nucleus are in motion within a mean field (MF) that is generated self-

consistently. The MF can be estimated using Wood-Saxon (WS) or harmonic oscillator 

(HO) potentials as long as a significant spin-orbit aspect is included. By adding the latter, 

the single-particle energy spectrum shows a shell structure that accounts for the 

experimentally observed magic numbers of protons and neutrons [2,3]. Most nuclei have 

a flat structure, where a small number of valence particles interact with an inert core 

through the residual nuclear force, leading to a relatively even distribution of particle 

density (protons and neutrons) throughout the nucleus without a significant decrease from 

the center to the edges. It was initially believed that this interaction and residual force 

originated from the fundamental interplay of free protons and neutrons [4,5].  

The spherical shell model can handle many nuclear excitations concurrently, 

including rotational bands from well-deformed intrinsic states, single-particle modes, 

neutron-neutron and proton-neutron pairing correlations. The pairing interactions 

between protons, neutrons, and neutrons affect the stability of the nucleus through the 

bonds between the particles, which contribute to their distribution within the nucleus [6 -

9].   A unified model that can predict the structure and features of nuclei has been sought 
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by scientists for some time [10-13]. Since nuclear physics was discovered, theoretical 

studies have so focused on nuclei and their structures and behaviours ever.  

Theoretical frameworks and approaches ranging from basic answers and 

conjectures to more complicated models have been devised to account for experimental 

findings. Light nuclei, defined as nuclei with a mass number A < 50, may be modelled 

using the bare N-N interaction [14, 15]. The use of SM is possible for nuclei with middle 

mass numbers [16–18]. Nevertheless, relativistic [19] and nonrelativistic [20, 21] MF 

theory can be applicable to heavy nuclei (nuclei with A > 60). The Hartree –Fock HF 

model, incorporating BCS theory, is the most favored model, considering pairing 

correlations with MF and being popular among all other models[22,23]. 

Our goal was to study the form factors for inelastic longitudinal and transverse 

electron scattering for 65Cu nuclei in the fp-shell region. The effective JUN45 [24] 

interaction was utilized in performing SM calculations for the jj44 model space. The SM 

calculation was carried out using the NushellX@MSU code without any constraints on 

the model space [25]. Also, the potential energy curves as a function of the quadrupole 

deformation parameters were studied using the HF calculations with SLy5 

parameterization.   The structure of this paper is as follows: Section 2 briefly introduces 

the SM and HF Method, while section 3 covers the presentation of results and discussions. 

In section 4, the study conclusions. 

 

2. Theoretical Framework  
This section describes two types of formalism for calculations that uses the SM 

calculations and HF approximation. 
 

2.1. Shell Model Calculations 
When the components of the single-particle matrix and the One-Body transition 

Density Matrix (OBDM) are added together, the nuclear matrix element of the 

electromagnetic (𝑜̂) operator is [26] 

〈𝑓‖ 𝑜̂ (𝜆)𝑡𝑧
‖𝑖〉      = ∑ 𝑂𝐵𝐷𝑀(𝑓𝑖𝑘𝑎𝑘𝑏𝜆)

𝑘𝑎𝑘𝑏

〈𝑘𝑎‖ 𝑜̂ (𝜆)𝑡𝑧
‖𝑘𝑏〉                                            (𝟏) 

    where 𝑋̂ operator stands for 𝑂̂ operator for electromagnetic. The OBDM is given by 

𝑂𝐵𝐷𝑀(𝑓𝑖𝑘𝑎𝑘𝑏𝜆) =
〈𝑓‖𝑎𝑘𝑎

+ ⊗ 𝑎̃kb‖𝑖〉

√2𝜆 + 1
                                                                                  (𝟐) 

All of the necessary quantum numbers to differentiate between the states are present 

in both I and f. The nuclear magnetic dipole moment is described by the M 

𝜇𝑇ℎ= √
4π

3
 ( 

J 1
−J 0

    
J
J
) ∑ 〈𝑓‖ 𝑂̂ (𝑀1)𝑡𝑧

‖𝑖〉𝜇𝑁𝑡𝑧
                                                         (𝟑)  

The nuclear magnetic is represented by 𝜇𝑁 =
𝑒ℎ

2𝑚𝑝𝑐
= 0.1051 𝑒𝑓𝑚. In relation to 

the E2 operator, the electric quadrupole moment is defined as 

𝑄𝑇ℎ=√
16π

5
 (

J 2
−J 0

    
J
J
) ∑ 〈𝑓‖ 𝑂̂ (𝐸2)𝑡𝑧

‖𝑖〉𝑒𝑡𝑧𝑡𝑧
                                                        (𝟒) 

 

The initial and final nuclear many body states include all the necessary quantum 

numbers to differentiate between nuclear states | 𝐽⟩ . The Skyrme potential, a two-body 

interaction, is used by the central potential. It may be converted into a single-body 

potential in the HF approximation. It is a potential that represents the average effect of all 

nucleons in the nucleus, taking into account both two-body and three-body nucleon 

interactions. The Skyrme potential VSkyrme can be written as [27] 

𝑉𝑆𝑘𝑦𝑟𝑚𝑒(𝑟1, 𝑟2) = 𝑡0(1 + 𝑥0𝑝̂𝜎)𝛿12 +
𝑡1

2
(1 + 𝑥1𝑝̂𝜎)[𝑘⃑⃑′2𝛿12 + 𝑘⃑⃑2𝛿12] 
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                     +𝑡2(1 + 𝑥2𝑝̂𝜎)𝑘′𝛿12𝑘 +
𝑡3

6
(1 + 𝑥3𝑝̂𝜎)𝑝𝛼(

𝑟1−𝑟2

2
)𝛿12 + 𝑖𝑊0𝑘⃑⃑′𝛿12(𝜎̂⃑1 +

𝜎̂⃑2) × 𝑘⃑⃑ 

                      +
𝑡𝑒

2
([3(𝜎̂⃑1. 𝑘⃑⃑′)(𝜎̂⃑2. 𝑘⃑⃑′) − (𝜎̂⃑1. 𝜎̂⃑2)𝑘⃑⃑′2] + 𝛿12[3(𝜎̂⃑1. 𝑘⃑⃑)(𝜎̂⃑2. 𝑘⃑⃑) −

(𝜎̂⃑1. 𝜎̂⃑2)𝑘⃑⃑2]) 

                         +𝑡0[3(𝜎̂⃑1. 𝑘⃑⃑)𝛿12(𝜎̂⃑2. 𝑘⃑⃑′) − (𝜎̂⃑1. 𝜎̂⃑2)𝑘⃑⃑′𝛿12𝑘⃑⃑′]                                             (5) 
where 𝛿12 =  𝛿(𝑟1 − 𝑟2) and 𝑘, 𝑘′   are the relative momentum operators with k 

acting on the right, and 𝑘′  acting on the left and are given by 

𝑘̂ =
1

2𝑖
(∇⃑⃑⃑1 − ∇⃑⃑⃑2)    ,          𝑘̂′ =

1

2𝑖
(∇⃑⃑⃑1 − ∇⃑⃑⃑2  )                                                                (6) 

𝑃̂𝜎  is the spin-exchange operator that is given as: 

𝑃̂𝜎 =
1

2
(1 + σ⃑⃑⃑1. σ⃑⃑⃑2)                                                                                                                     (𝟕)  

𝜎̂   is the spin operator. 

 

F(C λ ‚ q, f, i) is the longitudinal Coulomb form factor, F(E λ, q, f, i) is the transverse 

electric one, and F(M λ ‚ q, f, i) is the transverse magnetic one, where λ is the multipolarity 

[28]. Convection currents λc, created by the orbital movement of nucleons, and 

magnetization currents λm, caused by the magnetic moments of the nucleons, may be used 

to classify the last two form factors. Therefore, it is possible to describe the entire 

longitudinal form factor as 

|𝐹𝐶(𝑞, 𝑓, 𝑖)|2 = ∑ |𝐹(𝐶 𝜆 ‚ 𝑞, 𝑓, 𝑖)|2
𝜆≥0                                                                            (8) 

 
and the total transverse form factor as 

|𝐹𝑇(𝑞, 𝑓, 𝑖)|2 = ∑  {|𝐹(𝐸 𝜆 ‚ 𝑞, 𝑓, 𝑖)|2 + |𝐹(𝑀 𝜆 ‚ 𝑞, 𝑓, 𝑖)|2}𝜆>0                                      (9) 

 
By including the rotational momentum l and the momentum transfer q, which link 

the initial (i) and final (f) states in the nuclear shell model, the form factor for 

electroexcitation may be given as [29] 

| 𝐹(𝜂𝜆, 𝑞)|2 =
4𝜋

𝑍2(2𝐽𝑖+1)
|〈𝑓‖𝑇̂ (𝜂𝜆, 𝑞)‖𝑖〉 𝐹𝑐.𝑚 (𝑞)𝐹𝑓.𝑠 (𝑞)|

2
                                     (10)

  

where η stands for the Coulomb C longitudinal and transverse form factors. In the 

SM, the finite size (f.s.) nucleon form factor superscript compensates for the lack of 

translational invariance; A represents the mass number, while b represents the size 

parameter of the harmonic oscillator (HO). 

 
2.2. Hartree –Fock + Bardden-Cooper- Schriefer Calculations 
The self-consistent mean field approach examines nuclear structure and shape 

development by integrating HF and BCS computations. Density shape changes, taking 

pairing correlations into account, are studied using skyrme forces, abbreviated as SHF. 

When trying to forecast the group binding energies and individual energy levels of closed-

shell nuclei, the HF technique is probably the best bet [30]. In addition, SHF's zero-range 

interactions and central character make it useful [31, 32]. Nuclei are a many-body system 

in quantum mechanics that show quadrupole collectivity linked to the mean field's shape. 

The measure of operator Q̂ is linked to the overall degree of freedom. A mean-field theory 

is constructed from individual wave functions ψα and fractional occupation amplitudes 

υα [33], i. e.    {𝜑𝛼,𝑣𝛼, 𝛼 = 1, … . , Ω }. 
In the active single-particle space, Ω represents the size while the occupation 

amplitudes are constrained within the range 0 ≤ υα ≤ 1. The BCS many-body state is 
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constructed from these elements, resulting in the comple  mentary non-occupation 

amplitude [33] 

 
|𝜙⟩ = ∏ (𝑢𝛼 + 𝑣𝛼𝑎̂𝛼

+𝑎̂𝛼̅
+ )|0⟩𝛼>0                                                                                    (11) 

|0⟩ represents the particle-vacuum state, 𝑎̂𝛼
+  is the creation operator for a Fermion 

in the state ψα, and ᾱ is the time reversed partner of state α. The density of nucleons in 

the vicinity is defined as [24] 

 

𝜌𝑞(𝑟) = ∑ ∑ 𝑣𝛼
2

𝑠  |𝜓𝛼(𝑟,⃑⃑⃗  𝑠)|2
𝛼∈𝑞                                                                                    (12) 

The total energy is composed as 

 

Etot =T+ESkyrme+ECoulomb+Epair+Ecm                                                                                                                 (13) 

E Skyrme :Skyrme energy,  ECulomb :  Coulomb energy  

 

𝐸𝐶 =
𝑒2

2
∫ 𝑑𝑉𝑑𝑉′ 𝜌𝑝(𝑟)𝜌𝑝(𝑟′)

|𝑟−𝑟|
− ∫ 𝑑𝑉

3𝑒2

4
(

3

𝜋
)

1

3
 𝜌𝑝

4
3⁄

                                                        (14)       

and the pairing energy is 

𝐸𝑝𝑎𝑖𝑟 =
1

4
  ∑ 𝑉𝑝𝑎𝑖𝑟,𝑞𝑞𝜖{𝑝,𝑛} ∫ 𝑑𝑉|𝜉𝑞|

2
[1 −

𝜌

𝜌0,𝑝𝑎𝑖𝑟
]                                                         (15) 

 

In complete three-dimensional space, dV represents the volume element, e 

represents the elementary charge with e2 equaling 1.43989 MeV.fm, and 𝜉𝑞 is the pairing 

density [33]. 

 

𝜉𝑞 = ∑ ∑ 𝑤𝛼𝑠  𝑢𝛼  𝑣𝛼 𝜓𝛼̅(𝑟,⃑⃑⃗  𝑠)𝜓𝛼(𝑟,⃑⃑⃗  𝑠) 𝛼∈𝑞                                                                    (16) 

 

𝑤𝛼 indicates a rather small boundary of the pairing region. In the wave functions, the 

spinor component is denoted by the variables s ϵ ± 1. Volume and surface pairing 

equilibrium is affected by the pairing energy parameter ρ0. To put it simply, nuclear 

deformation occurs when the electric quadrupole moment shows that the nucleus is not 

exactly symmetrical around its centre of mass. Accordingly, the times of centre of mass 

are the key moments [33] 

 

𝑅⃗⃑𝑡𝑦𝑝𝑒=
∫ 𝑑𝑉𝑟 𝜌𝑡𝑦𝑝𝑒(𝑟)

∫ 𝑑𝑉𝜌𝑡𝑦𝑝𝑒(𝑟)
                                                                                                         (17) 

 

Any of the following may be considered a "type": an isovector moment from the 

isovector density, an isoscalar or total from the total density ρ= ρp + ρn, a proton from ρp, 

or a neutron from ρn. 

 

ρT= 1 = (A) ρp – (Z/A) ρn                                                                                                (18)              

The anisotropic mixtures can be measured using the spherical quadrupole moments 

[33]. 

 

 𝑄2𝑚,𝑡𝑦𝑝𝑒 = ∫ 𝑑𝑉𝑟2𝑌2𝑚 𝜌𝑡𝑦𝑝𝑒(𝑟 - 𝑅⃗⃑𝑡𝑦𝑝𝑒)                                                                     (19) 

Only at m=0 can non-zero quadrupole moments be accommodated by the existence 

of axial symmetry. In many cases, it is more practical to express them as a quadrupole 

deformation parameter, which is a dimensionless quadrupole moment 

𝛽20 =
4𝜋

3

𝑄20

𝐴𝑅2      , 𝑅 = 𝑅0𝐴
1

3⁄   , 𝑅0 = 1.2 𝑓𝑚                                                                (20) 
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In axial coordinate-space, wave functions and fields coexist on a grid. The article 

delves into the topic of axial coordinates and its relationship to Cartesian             

coordinates [33]. 

 

𝑟 = √𝑋2 + 𝑌2 , 𝑍 = 𝑍                                                                                                   (21)                                

R represents the axial coordinate that shows the space point's distance from the 

symmetry axis. Symmetrical objects, such as densities and potentials, are based solely on 

the r and z coordinates, which are both illustrated on a uniform grid 

 

𝑟 ↔ {𝑟0, … , 𝑟𝑁𝑟
}, 𝑟𝑣 = 𝑣∆𝑟                                                                                                (22) 

𝑧 ↔ {(𝑧−𝑁𝑧
… , 𝑧−1), 𝑧0, … , 𝑧𝑁𝑧

}, 𝑧𝑣 = 𝑣∆𝑧                                                                   (23)  

 

The variables ∆r and ∆z stand for the grid spacing's numerical parameters. The grid 

is filled along the z-axis from 0 to +Nz using reflection symmetry to rebuild the complete 

grid, or from -Nz to +Nz, allowing for reflection-asymmetric nuclear topologies. The 

axially symmetric functions f (r,z) that represent potentials and densities may be simply 

written as f (rυr, zυz) on the grid. The angular dependence and spin make a single particle 

wave function more complex. It is shown as [33] 

 

ψ𝛼 = (
𝜓𝛼

(+)
 (𝑟𝑣𝑟

, 𝑧𝑣𝑧
)exp (𝑖𝑚𝛼 𝜙)

𝜓𝛼
(−)

 (𝑟𝑣𝑟
, 𝑧𝑣𝑧

)exp (𝑖(𝑚𝛼 + 1)𝜙)
)                                                                  (24) 

 

In the upper spin component, the z-component of the orbital angular momentum is 

denoted by mα, and the z-component of the total z angular momentum is kα = mα + 1/2. 

 

3. Results and Discussions  
Our current study utilized the most recent NuSellX@MSU code [24] to compute 

the OBDM elements in the full fp-shell model space. This space includes the 1f7/2, 2p3/2, 

1f5/2 and 2p1/2 valence orbitals with a 40Ca nucleus serving as the inert core JUN45 

effective interaction. Additionally, the HF+BCS code was employed to analyze the 𝛽2 as 

a function of energy. Our discussion of the results was divided into four sections: the first 

section focuses on electroexcitation form factors, followed by excitation energies, and 

finally, the 𝛽2 parameter was explored using the HF +BCS method. 

 

3.1 Inelastic Electron Scattering Form Factors 

The study of inelastic electroexcitation form factors gives a full and detailed 

investigation of electromagnetic properties and the internal structure of the nuclei [33, 

34]. This study takes into consideration quite a wide range of nuclear processes. It applies 

different nuclear single-particle models, such as Skyrme-Hartree Fock (SLy4) [30], 

harmonic oscillator (HO) [28] and Woods- Saxon (WS) [29]. Having performed such a 

comparison for Cu isotope, the validity of the models was confirmed, and what can be 

done to enhance them was indicated. In most cases studied, the shell-model version of the 

Bohr-Mottelson (BM) collective model was employed. This version utilizes microscopic 

collective models to derive the collective (rotational and vibrational) modes from the 

Schrödinger equation for the many-particle nuclear Hamiltonian, in contrast to the 

postulated modes in the phenomenological collective models. 

 The effective charges were formulated following BM [3] to explicitly include 

neutron excess and generally compensate for missing excitations beyond the limited 

model space via the relations                                              where the epol term is given by 

the following equation 
  and  1   BM BM

n pol p pole e e e= = +
  / 0.32( ) / 0.32 0.3( ) / .pol ze e Z A N Z A N Z A = − − + − −
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3.1.1 Longitudinal C2 form factors 
Fig. 1 presents the calculated C2 form factors for the excited states 1/21, 1/22, Fig.2 

presents those for 5/21, 5/22, and Fig. 3 for 7/21, and compared with experimental data 

from the work of Erler et al. [35], covering a momentum transfer range of                 q=0 -  

2.8 fm−1. The C2 form factors for the 1/21 state (0.771 MeV) and 1/22 state (2.212 MeV) 

are shown in Figs. (1a) and (1b), respectively. 

In Fig. (1a), the C2 form factors calculated using the SLy4, HO, and WS showed 

good agreement with the experimental data, particularly at the first and second maxima. 

In contrast, the calculated data overestimated the experimental in Fig. (1b). 

Figs. (2a) and (2b) display the C2 form factors for the 5/21 state (1.115 MeV) and 

5/22 state (1.623 MeV). In Fig.(2a), the Tassie model calculations [35] showed 

enhancement at the first, second, and third maxima, aligning well with the experimental 

data. However, in Fig. (2b), the calculated C2 form factors underestimated the 

experimental data across all momentum transfer regions. 

Finally, Fig. 3 presents the C2 form factor for the 7/21 state (1.481 MeV), where the 

Tassie model calculations accurately described the experimental data across all q-values. 

 

 

 

Figure 1: Theoretical longitudinal C2 form factors using HO, WS and SLy4 parameterization 

for a) 1/21(0.770 MeV), b) 1/22 (2.212 MeV) transitions compared with experimental 

data [35]. 
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Figure 2: Theoretical longitudinal C2 form factors using HO, WS and SLy4 parameterization 

for a) 5/21(1.115 MeV), b) 5/22 (1.623 MeV) transitions compared with experimental              

data [35]. 

 

 
Figure 3: Theoretical longitudinal C2 form factors using HO, WS and SLy4 parameterization 

(1.481 MeV) transitions compared with experimental data [35].1for 7/2 
 

3.1.2 Longitudinal C4 form factors 
Fig.4 depicts the calculated C4 form factors for the states 5/23 and Fig. 5 for the 

7/22, 7/23, and 7/24, compared with experimental data from Erler et al. [35]. In Fig. 4, the 

C4 form factor for the 5/23 state (2.593 MeV) is well estimated by HO, WS and SLy4 

parameterization, while the Tassie model shows some deviations. the deviations are 

clearly visible at the extreme values, indicating that this model may not account for certain 

physical effects, such as nuclear deformations or pairing effects. .Fig. (5a) and (5b) 

present the C4 form factors calculated using the Tassie model for the 7/22 state (2.094 

MeV) and 7/23 state (2.278 MeV), which show good agreement with the experimental 

data. There were two diffraction maxima and one diffraction minimum in the 

experimental data, but the Tassie model predicted three diffraction maxima and two 

diffraction minima, which does not fully match the experimental data. In Fig. (5c), the 
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Tassie model underestimated the first diffraction maximum for the 7/24 state (2.643 MeV) 

and did not accurately represent the second maximum. 

 
Figure 4: Theoretical longitudinal C4 form factors using HO, WS and SLy4 parameterization 

with experimental data [35].(2.593 MeV) transitions compared 3for 5/2 
 

 

3.1.3 Transverse E2 Form Factors 
Fig. (6a) displays the theoretically calculated E2 form factors from (SLy4, HO, and 

WS) for the 1/21 state (0.771 MeV), which were compared with experimental data that 

showed significant scatter and high error bars near the first maximum. The theoretical 

results fell within the error bars at the first maximum and reproduced the experimental 

data up to q=1.6 fm−1 in the second maximum. Fig. (6b) presents the calculated E2 form 

factor for the 1/22 state (2.212 MeV), compared with the experimental data from the work 

of Erler et al. [35], which were scattered and had large error bars, making the diffraction 

maxima and minima less distinct. The theoretical calculations predicted two maxima and 

one minimum. The E2 transverse form factors for the 5/21 and 5/22 states (1.115 MeV, 

1.623 MeV) are shown in Figs. (7a) and (7b), respectively. The results from the three 

potentials and Tassie models failed to accurately reproduce the experimental data for the 

transverse form factor of the 7/21 state (1.482 MeV), as represented in Fig. 8. 
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Figure 5: Theoretical longitudinal C4 form factors using HO, WS and SLy4 parameterization 

for a) 7/22(2.094 MeV), b) 7/23(2.278 MeV), and c) 7/24(2.643 MeV) transitions compared 

with experimental data  [35]. 
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Figure 6: Theoretical transverse E2 form factors HO, WS and SLy4 parameterization for a) 

(2.212 MeV) transitions compared with experimental data [35]. 2(0.770 MeV), b) 1/211/2 
 

 
 

 
Figure 7: Theoretical transverse E2 form factors HO, WS and SLy4 parameterization for a) 

5/21(1.115 MeV), b) 5/22 (1.623 MeV) transitions compared with experimental data [35]. 
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Figure 8: Theoretical transverse E2 form factors HO, WS and SLy4 parameterization for 

7/21(1.481 MeV) transitions compared with experimental data [35]. 

 

3.1.4. Transverse E4 form factors 
The calculated E4 form factors for the state 5/23 is depicted in Fig. 9, and for the 

states 7/22, 7/23, 7/24 in Fig. 10. For the 5/23 state (2.593 MeV), the experimental data 

were well-labelled throughout all momentum transfer regions q. The calculations using 

the three potentials and Tassie model revealed three diffraction maxima, with the lowest 

peak located in the midst of the diffraction minima. In all momentum transfer locations, 

the computed E4 form factors for the 7/22 state (2.094 MeV) were lower than the 

experimental data (Figure 10a). The anticipated E4 form factors computed using the three 

potentials and Tassie model were similar; the experimental data in both Figs. (10b) and 

(10c) have significant error bars for the 7/23 (2.278 MeV) and 7/24 (2.643 MeV) states, 

respectively. the transverse E4 form factor for the state with two diffraction maxima 

underestimated the measured data and falls within the high error bars. When calculating 

the state's transverse E4 form factor, the Tassie and three potential models were almost 

indistinguishable; all four exhibited two diffraction maxima.  

 
Figure 9: Theoretical transverse E4 form factors HO, WS and SLy4 parameterization for 

(2.593 MeV) transitions compared with experimental data [35].35/2 
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Figure 10: Theoretical transverse E4 form factors HO, WS and SLy4 parameterization for  
a) 7/22(2.094 MeV), b) 7/23(2.278 MeV), and c) 7/24(2.643 MeV) transitions compared with 

experimental data [35]. 

 

3.2 The Excitation Energies  
The established levels of 65Cu (Z=29, N=36) were investigated by the shell model 

with 40Ca inert core. The calculations adopted the NuShellX code with the jj44 model 

space and the jun45 effective interaction [24]. The model space consists of nine protons 

and sixteen neutrons in orbits (1f7/2, 2p3/2, 2p1/2, and 1f5/2). The present results were 

compared with the experimental data [34], as shown in Fig. 11. The calculations of 

excitation energies are shown in Table 1.  
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It was shown that the fp-shell model gave an exact theoretical calculation of the excitation 

energies that agrees with experimental values. Therefore, the fp-shell model is considered 

one of the suitable models for studying the properties of heavy nuclei. 

 
Figure 11: Comparison of excitation energy parts of the experimental 65Cu level 

schemes with shell model calculations jun45 interaction. 

 

Table1: The results of excitation energies compared with the experiments data [34]. 

 

Nucleus 

29Cu 

A,     N 

 

𝑱𝝅 𝑻 

 

𝑬𝑿 (𝑴𝒆𝒗) 

CAL EXP 

65  , 36 1/21
-7/2 0.931 0.770 

5/21
- 7/2 1.569 1.115 

7/21
-7/2 1.516 1.481 

5/22
- 7/2 2.074 1.623 

7/22
- 7/2 2.164 2.094 

5/23
- 7/2 2.424 2.593 

1/22
-7/2 2.259 2.212 

7/23
-7/2 2.588 2.278 

7/24
- 7/2 2.910 2.643 

 

3.3 Quadrupole Deformation 
Potential energy curves PECS were considered as a function of the β2 with method 

HF + BCS based on Skyrme interaction (SLy5) [35]. The shape of the selected 65Cu nuclei 

was investigated. The left panel illustrates the β2 parameter for 65Cu as a function of 

energy. In the right panels, nuclear density calculations for two de65Cu formed shapes 

labeled as a (upper panel) and b (lower panel) are displayed for neutrons (on the left) and 

protons (on the right). 

In the 65Cu, proton density has the maximum in the center due to the strong nuclear 

force that overcomes their electric repulsion (Coulomb energy), allowing them to stay 

close together. Neutrons, being electrically neutral, are unaffected by Coulomb repulsion, 

but their distribution is less dense at the center to achieve balance and stability in the 

nucleus based on their interactions with protons, as shown in Fig. 12. The PECs curves 
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for 65Cu have two minima forming a coexistence of oblate and prolate deformations 

located at 2 = -0.15 and 2 = 0.15. These two minima are separated at the potential 

energy curves equal to -559 MeV and -558.5, respectively.  

The deformations at the minimum of energy (at points a and b) have the same value, 

β2= 0.151, due to the symmetry in the energy distribution of the nucleus around the 

symmetry axis. This symmetry leads to a balanced deformation at this particular value, 

meaning that the nucleus exhibits the same stability at these deformation values, 

achieving the minimum energy in both cases. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: The potential energy curve (PECS ) of 65Cu is shown as a function of β2 in the left 

panel, with two deformed shape, marked a (upper panel) and b (lower panel), for neutron 

(left) and proton (right). 

 

4. Conclusions 
Nuclear deformation was studied for 65Cu isotope within the fp-shell. The 

quantitative agreement was satisfying, with C2 form factor estimates using SLy4, HO, 

WS, and the Tassie model closely matching experimental data. The Tassie model offered 

better agreement with experimental results, particularly at the first maximum. The C2 and 

E2 form factors for the excited 1/21 state in Cu isotope, calculated using SLy4, HO, and 

WS potentials, showed good agreement with experimental data. However, the 

calculations underestimated the measured data for the excited 1/22 state. The C2 and E2 

form factors for the excited 5/21 and 5/22, 7/2-
1 states in Cu isotope, calculated using the 

Tassie model, showed enhancements at the first, second, and third maxima, which aligned 

with experimental data. The C4 form factors for the 5/23 state in the Cu isotope were well 

estimated using SLy4, HO, and WS potentials. The calculations for the 7/22, 7/23 and 7/24 

states, using the Tassie model, agreed with experimental data. The experimental data were 

represented within error bars by the virtually identical anticipated E4 form factors for the 

7/22, 7/23, 7/24 states in the Cu isotope, using the Tassie model and the three potentials. 

While the experimental data were overestimated by the transverse E4 form factor 

calculations for states with two diffraction maxima, the error bars were nevertheless large 

enough to be considered acceptable. 
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 ك  فو-هارتري  ونهج القشرةباستخدام نموذج  65-التحقيق في التركيب النووي للنحاس

 
 2 الزبيديعلي عبد اللطيف و  1رويدة طارق مهدي  

 ، جامعة بغداد، بغداد، العراق للبنات    قسم الفيزياء، كلية العلوم 1
 قسم الفيزياء، كلية العلوم، جامعة بغداد، بغداد، العراق  2

 

 الخلاصة 
فوك، وذلك  -باستخدام حسابات نموذج القشرة جنباً إلى جنب مع تقريب هارتري Cu65تتناول هذه الدراسة خصائص التشوه النووي لنظير   

الإلكترونات غير المرن، مع التركيز على كل من معاملات الشكل  لاستطارة تم إجراء تحليل مفصل  fp-shell. ضمن إطار مساحة نموذج

الطولية والعرضية، بالإضافة إلى حساب طاقات الإثارة. وقد تم تنفيذ هذه الحسابات باستخدام نموذج القشرة، مع دمج عناصر من مصفوفة 

تم تطبيق دوال موجية نظرية متعددة،  JUN45. لتسهيل تفاعل fp-shell كثافة الانتقال أحادي الجسم، والاستفادة من المساحة الكاملة لنموذج

، وتمت مقارنة نتائجها بدقة   (WS)، وجهد وود ساكسون (SLy4)فوك سكيرم  -، ودالة هارتري (HO)بما في ذلك دالة المتذبذب التوافقي

ضمن  SLy5 التشوه الرباعي من خلال معلماتعلاوة على ذلك، تم استكشاف أسطح الطاقة الكامنة كدالة لمعاملات  .مع البيانات التجريبية

دون فرض أي قيود   NushellX@MSU فوك. ومن الجدير بالذكر أن حسابات نموذج القشرة تم تنفيذها باستخدام برنامج-مقاربة هارتري

 .Cu 65على مساحة النموذج، مما أتاح فهمًا شاملًا وغير مقيد لديناميكيات البنية النووية لنظير 

 

 طاقة التهيج .  عوامل التشكل،  تشوه رباعي القطب، الفوك، -جهد سكيرم هارتري ،  -fpنموذج قشرة الكلمات المفتاحيه:
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