
Iraqi Journal of Physics, 2024                                                                            Vol. 22, No.4, PP. 21-41 

 21 

 

 Nuclear Structure Study Using Relativistic Mean Field (RMF) Method 
 

Sahar M. Aldulaimi
1a* 

and Ali A. Alzubadi
1b

 
1
Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq 

a*
Corresponding author: sahar.maged1604a@sc.uobaghdad.edu.iq 

Dr. Ali A. Alzubadi is the chief editor of the journal, but he did not participate in the peer review process other than 

as an author.  

 

 

Abstract Article Info. 

The current study uses the relativistic mean field approach to investigate the 

nuclear structure of selected even-even neutron-rich nuclei spanning from the 

stability line to the neutron drip line. Specifically, the nuclei studied include 
16–28

O, 
30–42

Si, 
48–60

Ca, 
56–68

Ni, 
88–100

Kr, 
96–122

Ru, 
140–152

Ba, 
142–154

Sm, and 
150–162

Er. The 

relativistic Hartree-Bogoliubov (RHB) method was applied, incorporating effective 

density-dependent point coupling (DD-PC) and density-dependent meson exchange 

(DD-ME) interactions. The impact of these interactions was demonstrated through 

the calculation of various nuclear structure properties, including binding energy 

(BE), kinetic energy (KE), pairing energy (PE), root mean square (rms) charge 

radius, two-neutron separation energy (S2n), mass densities (ρm), and triaxial 

deformation. The calculated results were compared with the available experimental 

data. It is clear that the RMF approach, particularly with the DD-ME2 and DD-PC1 

effective interactions, proved to be a valuable tool for studying nuclear properties 

near the drip lines and away from stability, providing insights into the behavior of 

exotic or halo nuclei. 
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I. Introduction 
The study of neutron-rich nuclei is a promising area of nuclear structure research 

that contributes significantly to our knowledge of nuclear physics. However, what 

happens to nuclei that are far from the stability line is still a mystery. In recent years, 

there has been a resurgence in interest in nuclear structure models, particularly for 

heavy-mass range nuclei, as experimental data is only accessible for light nuclei and not 

abundant. Studying nuclear structural characteristics along the drip lines and away from 

stability, especially for exotic or halo nuclei located close to the drip lines, relies heavily 

on theoretical models. Nuclear structure systems are complex, and a solid theoretical 

model is required to understand the many-body dynamics of nuclei. Although many 

unstudied stable nuclei form closed systems, it is still possible to study several of them. 

Our theoretical investigation focused on the nuclear isotopic chain, including 
28

O, 
42

Si, 
60

Ca, 
80

Ni, 
100

Kr, 
122

Ru, 
152

Ba, 
154

Sm, and 
162

Er. 

Gangopadhyay has studied the differences between the experimentally and 

theoretically calculated binding energies in the relativistic mean field (RMF) approach 

for many odd-Z nuclei ranging from A = 47 to 229 [1]. Marcos et al. [2] calculated the 

binding energy of two 𝛬 hyperons bound to a nuclear core using the RMF theory. Wang 

et al. [3] performed RMF calculations systematically for light isotopes (of A < 40) with 

the non-linear skyrme hartree (NL-SH( parameter set. Additionally, the gap parameter 

of the bardeen-cooper-schrieffer )BCS( model and the modified Ginzburg-Landau 

model were used for the first time in the RMF at finite temperatures. Furthermore, 

Yaghmaei et al. [4] calculated the average binding energy, radii, effective inverse level 

density parameter, and heat capacity within both methods for even–even isotopes of 
110-

130
Sn. 

The study of nuclei in relativistic and non-relativistic systems can be effectively 

analyzed using density functional theory (DFT). This theory is the foundation for 

several models, including the covariant DFT, which has various applications. One such 
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model, the relativistic Hartree-Bogoliubov (RHB) model, utilizes density-dependent 

effective interactions of the point-coupling type DD-PC1 and meson exchange DD-

ME2 in its calculations. Through numerous tests, the RHB hypothesis has successfully 

described nuclei near the drip lines and has been used to research unusual deformed 

nuclides. Other studies based on covariant DFT have also been conducted, focusing on 

shell structure and shell closure. This theory proves to be a useful tool for studying 

many-body systems with important ground-state parameters, such as binding energy 

(BE), kinetic energy (KE), pairing energy (PE), root mean square (rms) radius, two-

neutron separation energy (S2n), mass density (ρm) and triaxial deformation. 

The current study is divided into four sections. Section 2 gives a brief summary of 

the theoretical formalism of the RHB model. Section 3 presents and analyzes the 

calculated results. Lastly, section 4 provides a summary of the analysis's findings and 

conclusions. 

 

2. Theoretical Part 
2.1. Mean Field Theory 

In nuclear physics, the many-body system issue can be effectively solved with the 

help of the mean field (MF) theory. Since the many-body Schrӧdinger equation cannot 

be solved to obtain a good approximation of a highly interacting system, one solution is 

to transform the system so that it is made up of quasi-particles with other interactions. 

The perturbation theory can handle any remaining interactions [5]. In this case, the 

Hamiltonian system is [6]:  

Ĥ = T̂ + V̂ = ∑ t(ri)

A

i=1

+ ∑ v(ri, rj)

A

i,j=1
i˂j

= ∑
−ħ2

2mN 

A

i=1

∇i
2 + ∑ v(ri, rj)

A

i,j=1
i<j

                          (𝟏) 

where 𝑚𝑁  denotes the nucleon mass, ri denotes the i-coordinates, 𝑇 represents the 

kinetic energies, and 𝑉 represents the potential energies. The nuclear MF has to be 

derived from a process that is roughly similar to the Hartree-Fock (HF) one. Skyrme's 

density-dependent nucleon-nucleon interaction formula is implemented in the MF 

theory, making it optimal for closed-shell nuclei. The results for BE, density, and 

single-particle energies near the Fermi level are excellent when this method is used [7]. 

The influential interaction forces are directly parametrized in the HF method. The 

Skyrme Hartree-Fock (SHF) interaction [8], is one of the forces we considered. RMF 

theory [9], a classical relativistic theory of fields, is another key tool for studying the 

nuclear many-body system. According to this model, nucleons have a four-part wave 

function ψi like Dirac quantum mechanical particles. As they travel through many 

classical meson fields, the motion of these particles is dynamically relativistic. The MF 

technique is based primarily on using Dirac's four-spinor wave functions in the RMF 

framework for a solitary nucleon and the non-relativistic SHF [10, 11] procedure to 

produce a two-component-spinor wave function. 

 

2.2. Hartree-Fock Theory 
The HF approximation depends on fermions' compliance with the Pauli exclusion 

principle; therefore, it is easy to characterize how a nucleus exerts its force by 

considering how each nucleon acts when floating freely in a mean potential. This is one 

of the test wavefunctions that might help to understand the HF approximation. Here, a 

Slater determinant stands for A-nucleon ground states. Since, at first, only the precise 

spatial forms of the wave function for a single particle are known, the wave function of 
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an oscillator might be utilized to address this issue [8]. For an A-particle system, the HF 

approximation [12] makes it possible to express the entire Hamiltonian in terms of two 

forces acting on the particles and one component of kinetic energy 

ℋ̂ = ∑
p̂2

2mi

A

i=1

+
1

2 
∑ V(ri, rj),

A

i≠j

                                                                                                               (𝟐) 

where V(ri,rj) includes the Coulomb interaction and all the other forces involved in a 

nucleon-nucleon contact. By comparing the total Hamiltonian's expected value to the 

HF wave function, one can attempt to describe the ground-state energy 

EHF
0 = ⟨ψHF|ℋ̂|ψHF⟩   

=
−ħ2

2m
∑ ∫ ψi

∗

A

i=1

(r)∇2ψi(r) +  
1

2
∑ ∫ ∫ ψi

∗

A

i≠j

(r)ψj
∗(r′)V(r, r′)ψi(r)ψj(r′)drdr′

−
1

2
∑ ∫ ∫ ψi

∗

A

i≠j

(r)ψj
∗(r′)V(r, r′)ψi(r′)ψj(r)drdr′                                                                            (𝟑) 

 

2.3. Relativistic Approximation 

Combining RMF theory with the relativistic Hartree (RH) method and the no-sea 

approximation has successfully been used to investigate some nuclear processes. 

Despite RMF naturally integrating the spin-orbit interaction, the concern is that RMF 

needs to consider other effective spin-orbit interactions like the nuclear tensor force. 
Recently, the density-dependence relativistic Hartree-Fock (DDRHF) RMF approach 

has been proposed for nuclear structures [13]. Using this idea in the relativistic Hartree-

Fock Bogoliubov (RHFB) theory [14], exotic, unstable nuclei could be investigated. 

The Bogoliubov scheme, which enables efficient control of the continuum effect, is 

made possible by RHFB integration of the MF and the pairing field. 

Relativistic energy density functional (EDF) [15] characterizes the ground state 

and collective excitation of nuclei uniformly and globally over the entire nuclide table 

[16], which is why nuclear structure research heavily relies on them. Utilizing the 

single-particle Hamiltonian h and the Dirac equation along with the energy deflection 

function (EDF), where the latter is derived from the energy functional E[𝜌] [17], DFT 

develops the fundamental idea of relativistic approximation. To exchange mesons like 

Isoscalar-scalar mesons, Isoscalar-vector mesons, and Z bosons, standard quantum 

hydrodynamics (QHD) depicts the nucleus as a system of Dirac nucleons connected by 

an efficient Lagrangian [13]. The only kind of meson fields that may be used is 

isovector-vector fields. Currently, covariant density functional (CDF) theory [18] is the 

most advanced theoretical framework. There are three types of CDF models: the 

density-dependence meson-exchange model (DD-ME) [19], the density-dependence 

point coupling (DD-PC) [20] and the non-linear meson-nucleon coupling model (NL) 

[21]. The coupling structure between the DD-ME and DD-PC models consists of two 

vector terms and an Isoscalar-scalar term [22]. The ground state properties of neutron-

rich nuclei are examined in this study using both the finite-range interaction DD-ME 

and the zero-range interaction DD-PC. 
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2.3.1. Density Dependency Model for Meson Exchange 

Since mesons are not quantized, Fock terms are superfluous, and all they do is 

introduce relativistic accurate classical fields into the nucleus, which is their only 

purpose. Using the quantum numbers and the CDF framework, the Lagrangian density 

of this model may be determined without taking into account the effects of the Dirac 

Sea (the "no-sea approximation"). Theorize as defined by [5] 

ℒ = ℒN + ℒm + ℒint.                                                                                                                  (4) 

Free nucleons (ℒ𝑁) have the following Lagrangian 

ℒN = ψ̅(iγμ ∂μ − m)ψ,                                                                                                               (𝟓) 

where 𝜓 is the Dirac spinor and m is the atomic mass. To indicate the Lagrangian of the 

electromagnetic field and the free meson fields, ℒm is 

ℒm =
1

2
∂μσ ∂μσ −

1

2
mσ

2 σ2 −
1

2
ΩμvΩμv +

1

2
mω

2 ωμωμ −
1

4
Rμv . Rμv +

1

2
mρ

2ρμ . ρμ −
1

4
Fμv . Fμv                                                                                                                                      (6) 

Where  𝛺𝜇𝑣, 𝑅𝜇𝑉, and 𝐹𝜇𝑣 are the field tensors and  𝑚𝜎, 𝑚𝜔  and 𝑚𝜌 are the 

corresponding masses.  

Rμv = ∂μρv − ∂vρμ  ,     Ωμv = ∂μωv − ∂vωμ , Fμv = ∂μAv − ∂vAμ                       (𝟕) 

In contrast to the italicized letters used to symbolize vectors in regular space, 

arrows were employed to depict motion in isovector space. ℒ𝑖𝑛𝑡 contains the bare 

minimum of interaction words. 

ℒint = −ցσψ̅ψσ − ցωψ̅γμψωμ − ցρψ̅τγμψ. ρμ − eψ̅γμψAμ                                           (𝟖) 

The ց𝜎, ց𝜔 , ց𝜌, and e are the coupling constants, and 𝜏 is the Pauli isospin matrices. 

Through using the ց𝜎, ց𝜌 ,ց𝜔, and e-connections, the nuclear matter and its 

underlying ground state are simulated using these constants and the unknown meson 

masses.  In this model, the isoscalar-scalar meson supplies attractive nuclear interaction 

at intermediate and long ranges. In contrast, the repulsive component of the interaction 

at shorter ranges is provided by the isoscalar-vector meson [19]. Bilinear forms on the 

Lorentz scalar are postulated at the vertices of the coupling constants [23]. Operators on 

atomic nuclei are often functions of the vector density in practical contexts [24]. 

ρv = √jμjμ,   with jμ = ψ̅γμψ .                                                                                                 (𝟗) 

In the static scenario, the Hamiltonian density may be calculated directly from the 

Lagrangian density using the formula given by Yaghmaei et al. [4] 
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ℋ(r) = ∑ ψi
†

A

i

(⍺р + βm)ψi +
1

2
[(∇σ)2 + mσ

2 ] −
1

2
[(∇ω)2 + mω

2 ω2]

−
1

2
[(∇ρ)2 + mρ

2ρ2] −
1

2
(∇A)2

+ [ցσρSσ + ցωjμωμ + ցρjμ . ρμ + ejpμAμ] .                                            (𝟏𝟎) 

where H(r) is the Hamiltonian that depends on the position r and represents the total 

energy of the system, A is the vector potential associated with the magnetic interaction, 

ψi
†
 is the adjoint transition matrix for state i, ⍺, β are Dirac matrices, p is the momentum 

related to motion, m is the rest mass of the particle, ∇ is the gradient operator, σ is the 

scalar field of the nucleus ,ω is the vector field of the nucleus, ρ is the vector field of the 

nucleus, S is the nuclear spin, ց𝜎 , ց𝜔, ց𝜌 are the coupling constants for interactions 

between fields, 𝑗𝜇 is the current density, e is the electric charge, and 𝐴𝜇 is the spatial 

components of the vector potential. 

The RHFB model's most effective EDF is a particle-based one. The self-

consistency of both the particle-hole (p-h) and particle-particle (p-p) channels is 

maintained. The CDF energy density of the RHFB model is determined by the 

Hamiltonian H of the system and its projected value concerning the wave function in 

the ground state |Φ⟩:  

E = ⟨Φ|ℋ|Φ⟩                                                                                                                             (𝟏𝟏) 

To calculate the RHB EDF, we adjusted the energy functional in Eq. (11) 
based on the Dirac spinor 𝜓(r) 

ERHB[ρ, k] = ERMF[ρ] + Epair[k],                                                                                          (𝟏𝟐) 

The RMF energy functional, designated by 𝐸𝑅𝑀𝐹[𝜌], is obtained by integrating the 

Hamiltonian Eq. (10) across the r-space 

ERMF[ρ] = ∫ d3 rH(r)                                                                                                             (𝟏𝟑) 

Cooper pair scattering to the continuum through the pairing interaction is enabled 

by the nucleon separation energy, denoted by the Epair[k] pairing component, which is 

comparable to the pairing gap energy. To extract this energy, we must first solve the 

RHB energy function [13] 

Epair[k] =
1

4
∑ ∑ kn1n1

∗

n2n2 ,n1n1 ,

, ⟨n1n1 
′|VPP|n2n2 

′⟩ kn2n2 

′                                             (𝟏𝟒)  

which satisfies ⟨𝑛1𝑛1 
′|𝑉𝑃𝑃|𝑛2𝑛2 

′⟩  may be considered the density matrix and pairing 

tensor for a single body, respectively, and represent the pairing interaction between two 

bodies, respectively. The RHB equation may be derived using the theory of variations 

as shown [21] 
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(
hD − λ ∆

−∆∗ −(hD + λ)∗) = E (
U

V
)                                                                                          (𝟏𝟓) 

where hD denotes the m mass Dirac nucleon Hamiltonian. The chemical potential λ is 

described in terms of neutron and proton average particle number restrictions. Here, V 

and U are the Dirac spinors (energy quantifiers) of the quasi-particles, and E is the 

energy of the quasi-particles. The Dirac Hamiltonian, often known as 

ĥD = ⍺(p − Σ) + Σ0 + β(M + Σs)                                                                                        (𝟏𝟔) 

The attractive scalar potential is represented as follows in terms of the nucleon's 

self-energies Σs 

Σs(r) = ցσσ(r)                                                                                                                          (𝟏𝟕) 

The term 𝛴𝑠(𝑟) denotes the scalar potential at a specific position r within the 

nucleus, ց𝜎 represents the coupling constant associated with the scalar field interaction 

in the nuclear model, and 𝜎(𝑟) corresponds to the scalar field distribution within the 

nucleus. For the repulsive vector potential 

Σ0(r) = ցωω0(r) + ցρτ. ρ0(r) + eA0(r) + Σ0
R(r)                                                          (𝟏𝟖) 

This component includes terms involving the omega field (ω₀(r)), the rho field 

(τ·ρ₀(r)), the vector potential (A₀(r)), and a residual component Σ₀^R(r). 

The magnetic potential is: 

Σμ = ցωωμ(r) + ցρτ. ρμ(r) + eAμ(r) + Σμ
R(r)                                                                (𝟏𝟗) 

where  Σμ is the total current density, ցωis the coupling constant associated with the ω 

field, ωμ(r)is the vector field ω at position r, ցρ is the coupling constant associated with 

the ρ field, τ is the isospin operator, ρμ(r) is the vector field ρ at position r, e is the 

electric charge, Aμ(r) is the vector potential A at position r, and Σμ
R(r) is the external 

current density. 

 

2.3.2. Point-Coupling Models with Density Dependence 

Point-coupling models may be considered as a special case of the RMF 

framework that satisfies the principle of internal consistency. In complete identification 

to the ME phenomenology [13], where the smallest set of meson fields necessary for a 

quantitative description of the nucleus consists of the Isoscalar-scalar meson, the 

isovector-vector meson, and the isovector-vector meson. Similar local interactions [20] 

between nucleons have been created as a replacement for these pathways, with density 

dependence coming either from the two-body coupling constant contacts or the contact 

of many-body potential conditions [13]. 

The effective Lagrangian includes the interactions of the isoscalar, isovectors, and 

scalars for a total of four fermions. For which the textual form is [25] 
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ℒ = ψ̅(iγ. ∂ − m)ψ −
1

2
⍺S(ρ̂)(ψ̅ψ)(ψ̅ψ) −

1

2
⍺V(ρ̂)(ψ̅γμψ)(ψ̅γμψ)

−
1

2
⍺TV(ρ̂)(ψ̅τγμψ)(ψ̅τγμψ) −

1

2
δS(∂vψ̅ψ)(∂vψ̅μψ)

− eψ̅γA
1 − τ3

2
ψ                                                                                            (𝟐𝟎) 

The free-nucleon Lagrangian and point-coupling interaction components are also 

included in the model, along with the coupling of protons to the electromagnetic field. 

Quantitatively characterizing the nuclear density distribution (in terms of nuclear radii) 

relies on a precise understanding of the effects of finite-range interactions, which were 

described by the derivative term in Eq. (20). In each space-isospace channel, similar 

interactions can be involved but only constrain a single derivative term in particle data 

involved, for example δS(∂vψ̅ψ)(∂vψ̅ψ). The acceptable derivative term only 

consistently appears in the isoscalar-scalar channel and traditional meson-exchange 

RMF models, where the mass of the meson is viewed as a free parameter, even though 

the masses of the mesons are set at random. By coupling constants in Eq. (20), the 

interaction terms can be understood as functionals of the nucleon four-current 

jμ = ψ̅γμψ = ρ̂uμ                                                                                                                      (𝟐𝟏) 

where uμ is a 4-velocity expressed as (1 − v2)
1

2⁄ (1, v).      
The nuclear matter is homogeneous, so its rest frame velocity is 0. The 

Hamiltonian density ℋ(r)and EDF for the point-coupling model are derived using a 

Lagrangian density and the Euler-Lagrange Equation [4][9] 

𝐸𝑅𝑀𝐹[𝜓, 𝜓,̅ 𝐴𝜇]

= ∫ 𝑑3𝑟𝐻(𝑟) = ∑ ∫ 𝑑3𝑟𝜓𝑖
†

𝐴

𝑖=1

(⍺р + 𝛽𝑚)𝜓𝑖 −
1

2
(𝛻𝐴)2

+
1

2
𝑒 ∫ 𝑑3 𝑟𝑗𝑝

𝜇
𝐴𝜇

+
1

2
∫ 𝑑3 𝑟[⍺𝑆𝜌𝑆

2 + ⍺𝑉𝑗𝜇𝑗𝜇 + ⍺𝑇𝑉𝑗𝜇. 𝑗𝜇 + 𝛿𝑆𝜌𝑆𝜌𝑆]                                 (𝟐𝟐) 

From the derivative of the EDF concerning the Dirac spinors ψ in Eq. (22) 

{−i⍺∇ + βM∗(r) + V(r)}ψi(r) = єiψi(r)                                                                           (𝟐𝟑) 

under the assumption that time-reversal invariance can be verified. To define the 

Dirac effective mass, we need 

M∗ = m + Σs = m + δSρS + δS∆ρS                                                                                     (𝟐𝟒) 

whereas the definition of the vector potential is: 

V(r) = ⍺Vρv + ⍺TVτ3ρtv + eA0 + Σ0
R                                                                                  (𝟐𝟓) 



Iraqi Journal of Physics, 2024                                                     Sahar M. Aldulaimi
 
and Ali A. Alzubadi 

 28 

The rearrangement contribution, indicated by 𝛴0
𝑅, is a function of the variation of 

the couplings ⍺S  , ⍺𝑉 , and ⍺𝑇𝑉. According to the nucleon fields in the density operator 

Σ0
R =

∂⍺S

∂ρv
ρs

2 +
∂⍺V

∂ρv
ρv

2 +
∂⍺TV

∂ρv
ρtv

2                                                                                         (𝟐𝟔) 

The rearrangement of self-energy must be taken into consideration [24] to ensure 

that the model is thermodynamically and kinematically consistent and that energy and 

momentum are conserved. 

3. Results and Discussions 
In this investigation, a thorough analysis was conducted on the nuclear properties 

of specific isotope chains, including 
16-28

O, 
30-42

Si, 
48-60

Ca, 
56-68

Ni, 
88-100

Kr, 
96-122

Ru, 
140-

152
Ba, 

142-152
Sm, and 

150-162
Er. The results were calculated using RMF and then 

compared with available experimental data. As depicted in Fig. 1, the ground-state 

binding energies were calculated using both DD-ME2 and DD-PC1 effective 

interactions and compared with experimental data from the National Nuclear Data 

Center [26]. The binding energy (BE) increased with the rise in mass number. Our 

results are in good agreement with the general trend of the experimental data, with the 

exception of Kr and Ba isotopes. In both cases, our calculations underestimated the 

experimental data for both parameterizations. As illustrated in Figure 2, the kinetic 

energy (KE) also increased with the rise in mass number. Notably, a significant 

concordance is observed between ME2 and PC1 in isotopes 
16-28

O and 
30-42

Si, while a 

minor disparity in KE values is noted between ME2 and PC1 of the isotopes 
48-60

Ca, 
56-

68
Ni, 

88-100
Kr, 

96-120
Ru, 

140-152
Ba, 

142-154
Sm, and 

150-162
Er. The difference in kinetic energy 

values between ME2 and PC1 model may be due to different theoretical structures; 

underlying assumptions in the two models functionally dependent droplet- like 

interactions between the interfaces can lead to differences in the predicted kinetic 

energy values, especially for isotopes with a certain number of atoms that may contain 

meson exchange or point-join interactions. 

The pairing energy is a fundamental aspect of nuclear structure, representing the 

energy associated with pairing nucleons in a nucleus. In the context of neutron-rich 

nuclei, the behavior of the pairing energy curve can offer valuable insights into the 

nuclear properties and stability of these exotic systems. The pairing energy curve 

typically demonstrates distinctive trends as the number of neutrons increases within a 

nucleus and strong agreement between the ME2 and PC1 interactions for most isotopes. 

Various factors influence its behavior, such as the neutron shell structure, the 

occupation of neutron energy levels, and the interplay of nuclear forces within the 

nucleus. The pairing energy trend observed in the nuclei in Fig. 3 follows a consistent 

pattern across different isotopes, reflecting the interplay between nuclear structure and 

neutron numbers. For 
16-28

O isotopes, the pairing energy values decreased as the neutron 

number approached the magic numbers, resulting in lower pairing energies due to the 

formation of closed-shell configurations. The pairing energy curve for 
30-42

Si isotopes 

showed a non-linear trend and abrupt changes in the pairing energy values. This is due 

to the influence of shell structure evolution, magic numbers, and the onset of 

deformation on the pairing energy variations in silicon isotopes. The pairing energy 

curves for Ca, Ni, Kr, Ba and Er isotopes showed consistent trends as the number of 

neutrons increased within the isotopic chains. The behavior of the pairing energy curves 

is influenced by factors such as the neutron shell structure, the occupation of neutron 

energy levels, and the interplay of nuclear forces within the nucleus. In the case of Ru 

isotopes, there was a noticeable gradual increase in the discrepancy in pairing energy 
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calculations for isotopes 
112

Ru, 
114

Ru, and 
116

Ru when using the ME2 and PC1 

interactions. These differences are influenced by the changing neutron numbers, 

sensitivity to neutron interactions, and the treatment of pairing factors, all of which 

collectively contribute to the growing disparity in the pairing energy results as the 

neutron number varies across the isotopes. The pairing energy curve for Sm isotopes 

showed a rapid decrease, especially for the 
144

Sm isotope with N=82, compared to other 

Sm isotopes. This is due to strong pairing correlations resulting from the presence of a 

magic number, causing a more significant pairing effect than in other Sm isotopes. This 

behavior results in a considerable reduction in the energy associated with pairing 

nucleons, indicating the strong binding and stability of the nucleus. 
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Figure 1: The binding energy (BE) in MeV as a function of mass number (A) for even-

even: (a) 
16–28

O, (b) 
30–42

Si, (c) 
48–60

Ca, (d) 
56–68

Ni, (e) 
88–100

Kr, (f) 
96–122

Ru, (g) 
140–152

Ba, (h) 
142–154

Sm and (i) 
150–162

Er isotopes, using ME2, PC1 interactions. In comparison with the 

experimental data of the National Nuclear Data Center [25]. 
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(a) 

 

 

(b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) 

Figure 2: The kinetic energy (KE) in MeV as a function of mass number (A) for even-

even: (a) 
16–28

O, (b) 
30–42

Si, (c) 
48–60

Ca, (d) 
56–68

Ni, (e) 
88–100

Kr, (f) 
96–122

Ru, (g) 
140–152

Ba, 

(h) 
142–154

Sm and (i) 
150–162

Er isotopes, using ME2, PC1 interactions. 
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 Figure 3: The pairing energy (PE) in MeV as a function of mass number (A) for even-even: 

(a) 
16–28

O, (b) 
30–42

Si, (c) 
48–60

Ca, (d) 
56–68

Ni, (e) 
88–100

Kr, (f) 
96–122

Ru, (g) 
140–152

Ba, (h) 
142–154

Sm 

and (i) 
150–162

Er isotopes, using ME2, PC1 interactions. 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) 
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Fig. 4 illustrates the calculated rms charge radii of each isotopic chain, which 

exhibit systematic trends as the number of neutrons increases within the nucleus. With 

the addition of neutrons, the nuclear size may change due to the influence of the neutron 

distribution on the overall charge distribution of the nucleus. The behavior of rms 

charge radii for isotopic chains can be understood in terms of systematic trends with 

neutron number, the influence of magic numbers and shell effects, nuclear deformation 

and shape changes, and the impact of pairing effects on nuclear stability and charge 

distribution. These physical interpretations provide insights into the variations observed 

in the rms charge radii for different isotopes within the isotopic chains studied in the 

paper. Comparison with experimental data for each isotopic chain, as shown in Fig. 4, 

showed a reasonable agreement in rms charge radii [27]. This suggests that the model 

used in the study effectively predicts the charge distribution and nuclear properties of 

the isotopes studied. The good alignment between experimental and theoretical results 

validates the model's capability to accurately describe these isotopes’ nuclear structure. 

The differences in the calculated rms charge radius curves using the PC1 and ME2 

interactions, especially in Ni isotopes, can be attributed to the distinct characteristics, 

assumptions, parameterizations, and treatment of nuclear structure effects within the 

theoretical model. These discrepancies highlight the importance of understanding the 

nuances of different effective interactions and their impact on predicting nuclear 

properties accurately.  

The discrepancies between the PC1 and ME2 interactions result in calculating the 

rms charge radii for nickel isotopes (Z=28) while showing good agreement in oxygen 

(Z=8) and calcium (Z=20) isotopes with the proton magic numbers attributed to the 

unique combination of nuclear symmetry effects, shell structure properties, deformation 

characteristics, and sensitivity to effective interaction parameters specific to nickel 

isotopes. These factors highlight the intricate nature of nuclear structure modeling and 

the need to consider the nuanced behavior of isotopes with different proton numbers in 

theoretical calculations. 

Fig. 5 shows the calculated two-neutron separation energy (S2n) for each isotopic 

chain. This energy is crucial for understanding nuclear stability, shell structure effects, 

nuclear interactions, predicting nuclear reactions, studying nuclear structure evolution, 

and exploring exotic nuclei near the drip lines. It is a fundamental quantity in nuclear 

physics research and significantly contributes to our understanding of the properties and 

behavior of atomic nuclei. In the case of oxygen isotopes, a sudden shift in slope was 

observed for certain isotopes, such as 
26

O, due to a closed shell structure. This suggests 

a significant energy barrier for removing two neutrons, resulting from the stability 

conferred by the magic number of neutrons. The difference between experimental and 

theoretical S2n values for specific isotopes may indicate the influence of shell closures 

and the need for a more refined theoretical description of these nuclei. A discrepancy 

appeared between theoretical predictions and experimental S2n values for Si isotopes, 

which may indicate limitations in the theoretical approach used. The behavior of S2n in 

Ca isotopes showed slight differences between experimental and theoretical S2n values 

for certain isotopes (
50, 56

Ca). This may suggest variations in the nuclear structure 

properties and the impact of the effective interactions used in the calculations. The 

presence of magic numbers in calcium isotopes can lead to specific trends in the S2n 

values, indicating the stability of these isotopes against neutron removal. For Ni 

isotopes, the behavior of S2n can reveal a sudden shift in slope observed for certain Ni 

isotopes (
58, 64, 66, 68

Ni), which may indicate the presence of closed shell structures and 

the associated energy barriers for neutron separation. 

The S2n curve for Kr isotopes using the PC1 interaction showed a particular trend 

in the separation energies, indicating the stability of these isotopes against neutron 
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removal. The ME2 interaction exhibited a slightly different trend compared to PC1, 

potentially reflecting variations in the nuclear structure properties and effective 

interactions. The discrepancies between the theoretical predictions using PC1 and ME2 

interactions and the experimental data may suggest limitations in the theoretical 

approach used or the need for a more refined description of these nuclei. The S2n curve 

for Ru isotopes with the PC1 interaction showed a gradual increase or decrease in 

separation energies, influenced by the varying neutron numbers and pairing effects. 

When using the ME2 interaction, the S2n curve aligned with the PC1 curve, and both 

were in good agreement with experimental data. 

The (S2n) curve for Ba, Sm, and Er isotopes with the PC1 and ME2 interactions 

demonstrated a clear and consistent pattern, adhering to the expected behavior. 

However, a noticeable discrepancy arised when comparing these curves to the 

experimental data. Nonetheless, the overall trend of the separation energy changing 

alongside the increasing number of neutrons remained consistent with theoretical 

expectations. The discrepancies between the calculated S2n values and the experimental 

data could indicate areas where the models may need adjustments or refinements. 

The mass density distribution and triaxial deformation shown in Fig. 6 are for 

selected isotopes with the highest mass number from the investigated isotopic chains 

and close to the neutron drip line, specifically, 
28

O, 
42

Si, 
58

Ca, 
68

Ni, 
100

Kr, 
122

Ru, 
152

Ba, 
154

Sm, and 
162

Er. 
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(a) (b) 

(c) (d
) 

(e) (f) 

(g) (h) 

(i) 

Figure 4: RMS charge radii in fm as a function of mass number (A) for even-even: (a) 
16–

28
O, (b) 

30–42
Si, (c) 

48–60
Ca, (d) 

56–68
Ni, (e) 

88–100
Kr, (f) 

96–122
Ru, (g) 

140–152
Ba, (h) 

142–154
Sm 

and (i) 
150–162

Er isotopes, using ME2, PC1 interactions. In comparison with the 

experimental data of Angeli and Marinova [26]. 
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(a) 
(b) 

(c) (d) 

(e) 
(f) 

(g) (h) 

(i) 

Figure 5: S2n in MeV as a function of mass number (A) even-even (a) 
16–28

O, (b) 
30–42

Si, 

(c) 
48–60

Ca, (d) 
56–68

Ni, (e) 
88–100

Kr, (f) 
96–122

Ru, (g) 
140–152

Ba, (h) 
142–154

Sm and (i) 
150–162

Er 

isotopes, using ME2, PC1 interactions. In comparison with the experimental data of the 

National Nuclear Data Center [25]. 
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The mass density distribution for 
28

O suggests that it has a compact nucleus with a 

well-defined spatial arrangement of nucleons. The density profile demonstrated a 

central peak, which indicates a strong nuclear binding force. By analyzing the contour 

lines in the figure, it is apparent that 
28

O has a spherical shape rather than exhibiting 

triaxial deformation. This spherical shape is a result of the specific nuclear structure and 

interactions present in this isotope. 

The mass density distribution of 
42

Si indicated a more spread-out nucleus 

compared to 
28

O, with a wider distribution of nucleons. Variations in density profiles 

suggest changes in nuclear structure and neutron-proton interactions. The nuclear shape 

of 
42

Si differs from 
28

O. This nucleus has a magic number of N=28, which requires a 

strong spin-orbit interaction. The ground state is localized around the oblate-shaped 

energy minimum at (β, γ) = (0.35, 60◦). 

The mass density distribution for 
68

Ni showed a nucleus with a well-defined 

central peak and a broader distribution of nucleons compared to 
60

Ca. Variations in 

density profiles could indicate changes in nuclear structure and pairing effects. 

According to the triaxial deformations curves shown in Figs. 6, it can be inferred that 
68

Ni nuclei, which have a single-shell closure, exhibit a spherical shape with values of β 

= γ = 0. The mass density distribution for 
100

Kr indicated a central peak and a broader 

distribution of nucleons compared to 
68

Ni. Variations in density profiles could indicate 

changes in nuclear structure, magic numbers, and shell effects. The contour plot of the 
100

Kr nucleus showed a sharp transition from a prolate ground state to an oblate one. 

The occurrence of a triaxial shape transition can be attributed to the competition 

between different nuclear forces and energy considerations. The mass density 

distribution for 
122

Ru exhibited a well-defined central peak and a broader distribution of 

nucleons. Variations in density profiles could indicate changes in nuclear structure and 

pairing effects. Triaxial deformation in 
122

Ru was almost spherical, and a rising hill 

pushing it towards the right, making it more axial (prolate).  

 

 

 

(a) 

(b) 

Figure 6: Mass density in fm
-3

 for even-even (a)
 28

O, (b)
 42

Si, using PC1 interaction. 
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The mass density distribution for 
152

Ba showed a central peak and a broader 

distribution of nucleons. Variations in density profiles could reflect changes in nuclear 

structure, magic numbers, and shell closures.
152

Ba isotopes displayed prolate 

deformation at their absolute minima. The mass density distribution for 
154

Sm showed a 

distinct central peak and a broader distribution of nucleons. The triaxial deformation 

demonstrated an increase in the depth of both prolate and oblate shapes, as well as the 

emergence of a pronounced prolate deformation. This deformation is more rigid with 

respect to the γ degree of freedom. The mass density distribution for 
162

Er showed a 

central peak and a broader distribution of nucleons. Variations in density profiles could 

reflect changes in nuclear structure, magic numbers, and shell closures. 

The mass density distribution for 
60

Ca exhibited a well-defined central peak, 

indicating a compact nucleus with a high nucleon concentration. Variations in density 

profiles could reflect the influence of magic numbers and shell closures. The triaxial 

deformation in 
60

Ca suggests a symmetric shape. 

 

 

 

 

 

Figure 6 continued but for (h)
 154

Sm and (i) 
162

Er. 

 

 

 

 

 

 

 

 

(i) 

(h) 
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(f) 

(e) 

(c) 

(d) 

Figure 6  continued but for but for (c)
 60

Ca, (d)
 68

Ni, (e)
 100

Kr, (f)
 122

Ru, (g)
 152

Ba. 

(g) 
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   4. Conclusions 
The present study utilized the RHB method with different parameterizations to 

calculate the ground state nuclear properties of neutron-rich heavy nuclei near the drip 

line. The RHB demonstrated the effectiveness of approximating highly interacting 

systems with quasi-particles. This approach allows for the study of complex many-body 

systems by transforming them into more manageable forms, enabling the calculation of 

nuclear properties near the drip line. The DD-PC1 and DD-ME2 interactions in the 

RMF calculations play a crucial role in accurately describing the nuclear properties of 

neutron-rich nuclei. These interactions capture the nuanced effects of the nuclear 

environment, leading to improved agreement with experimental data. The comparison 

of theoretical results with experimental data underscores the predictive power of 

advanced nuclear physics models in capturing the intricate dynamics of neutron-rich 

nuclei. The success of the DD-PC1 interaction in reproducing key nuclear properties 

highlights the importance of selecting appropriate effective interactions for accurate 

predictions. The observed variations in triaxial deformation across different nuclei, such 

as prolate, oblate, and spherical shapes, indicate the presence of shape transitions in the 

nuclear structure. These transitions are influenced by the competition between different 

nuclear forces and energy considerations, leading to changes in the overall shape of the 

nucleus. 
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المجال النسبي معدل استخدام طريقة دراسة التركيب النووي ب   

 
سحر ماجد اسماعيل

1
وعلي عبد اللطيف كريم 

1  

العراق بغداد، قسم الفيزياء، كلية العلوم، جامعة بغداد، 1  
  

   الخلاصة

قرار إلى خط تمتد من خط الاست ومختارة غنية بالنيوترونات  هيجوز– هيجوز هيونلاتبحث الدراسة الحالية في البنية النووية

التي تمت دراستها هيونلاعلى وجه التحديد، تشمل ا. المجال النسبي لدعمالنيوتروني باستخدام نهج  رطاقتلا
16–28

O, 
30–42

Si, 
48–60

Ca, 
56–68

Ni, 
88–100

Kr, 
96–122

Ru, 
140–152

Ba, 
142–154

Sm, and 
150–162

Er . تم استخدام طريقةHartree-Bogoliubov (RHB) 

(. DD-ME)وتبادل الميزون المعتمد على الكثافة ( DD-PC)النسبية، والتي تتضمن تفاعلات اقتران النقطة الفعالة المعتمدة على الكثافة 

، والطاقة الحركية (BE)تم توضيح تأثير هذه التفاعلات من خلال حساب خصائص البنية النووية المختلفة، بما في ذلك طاقة الربط 

(KE)قتران ، وطاقة الا(PE) مربع نصف قطر الشحنة، وطاقة فصل النيوترونات ، وجذر متوسط(S2n)والكثافة الكتلية ، (em) والتشوه ،

، خاصة مع التفاعلات الفعالة RMF من الواضح أن تقريب. وتمت مقارنة النتائج المحسوبة مع البيانات التجريبية المتاحة. ثلاثي المحاور

DD-ME2 وDD-PC1وبعيدًا عن الاستقرار، مما يوفر نظرة  رطاقتلاتقريبا جيدا لدراسة الخواص النووية بالقرب من خطوط  ، أثبت أنه

 .ثاقبة لسلوك النوى الغريبة أو الهالة

 .ةالزوجي-النوى الزوجية نقطة الاقتران, ،تبادل الميزون ،الانوية الغنية بالنيوترونات ،نظرية معدل المجال النسبي  :المفتاحية الكلمات
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