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Abstract Article Info. 

In this study, the charge density distribution was calculated using the folding 

model, which has been applied to study the roles upon the center of mass and Pauli 

pair association affect the density relying on the efficient two-body interactions, as 

a formula for the two-body density applicable to limit nuclei may be derived in 

terms of the pair correlation function for 20Ne and 24Mg nuclei. The elastic 

electrons scattering form factors F(q) and the root of the mean square charge radii 

〈𝑟2〉1/2were determined. The inelastic longitudinal electron scattering form factors 

associated with the isosceles transitioning T = 0 of the(Ji
π → Jf

π): ( 0+ → 2+ ) and 

(0+ → 4+) for the 20Ne and 24Mg nuclei were determined. A wave function within 

the model space, which is defined by the orbits  1d5/2 , 2s1/2 and 1d3/2, is unable 

to produce an acceptable form factor. Using the folding model to estimate the 

lower state form for distribution of charge density and adopting the shape of the 
Tassie model, the core polarization transition density is calculated. An astounding 

understanding of the computed inelastic longitudinal F(q)'s and those of 

observational data is seen for all investigated nuclei, and it is noted that the core 

polarization effects, which reflect the group modes, are crucial to this outcome. 
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1. Introduction 
Electron scattering is the consequence of an electromagnetic reaction. There are 

many theories on why an electron is such an effective instrument for studying the 

structure of nuclear particles [1, 2]. The electron's fundamental attachment to the object 

being targeted nucleus is well-established. It is feasible to conduct measures on the 

targeted nucleus without substantially altering its structure as a result of the relatively 

weak interaction. In contrast, the target's shape and relationship with nuclear particles 

are not known, which makes it very difficult to distinguish between them during the 

examination of the results of experiments. The effect of the electron scattering operator 

instantly links its cross-section to the change in matrix components of the localized 

charged and current-density operator, which in turn is directly related to the target 

nucleus's structure [3]. 

Radhi et al. [4] have studied the nuclear structure of 19F nucleus, inelastic electron 

scattering form factors, energy levels and transition probabilities for positive and 

negative low-lying states. Mahmood and Flaiyh [5, 6] have employed an effective two-

body density operator for a point nucleon system folded with the tensor force 

correlations. The operator has been used to derive an explicit form for the ground state 

two-body charge density distribution (2BCDD) applicable for some light nuclei. 

Sarriguren and Merino [7] have studied the magnetic form factors corresponding to 

elastic electron scattering from odd-A nuclei. The calculations are carried out in plane-

wave Born approximation. Al-Rahmani et al. [8] have studied the short-range effects on 

C2 and C3; they also examined C4 form factors in the 26Mg nucleus. Flaiyh and Sharrad 

[9] have studied “the effective two-body density operator for a point nucleon system 

folded with the full two-body correlations (which include the tensor correlations and 

short-range correlations)”. 

P-ISSN: 2070-4003 

E-ISSN: 2664-5548 

© 2024 The Author(s). Published by College of Science, University of Baghdad. This is an open-access 

article distributed under the terms of the Creative Commons Attribution 4.0 International License 
(https://creativecommons.org/licenses/by/4.0/).  

 

https://doi.org/10.30723/ijp.v23i1.1311 

mailto:hassan.kalid@sc.uobaghdad.edu.iq
https://creativecommons.org/licenses/by/4.0/


Iraqi Journal of Physics, 2025                                                            Hassan K. Issa and Ghaith N. Flaiy    

 21 

In this work, distribution of charge density, elastic and inelastic form factors of 
20Ne and 24Mg target nuclei were calculated. It is currently acknowledged that the 

description of electron scattering data is inadequate when form factors are calculated 

exclusively using the extensive particle shell model space by comparing theoretical 

results with experimental results. Therefore, it is imperative to include the effects of the 

two-body effective folding model (core polarization) in the equations. This phenomenon 

can be explained by the polarization of core protons (p) by the surrounding protons (p) 

and neutrons (n). The Tassie model [10] provides the shape of the transition density for 

the excitation in question. This model, when coupled with the two-body charge density 

distribution and simple shell model predictions, results in a high degree of accord in the 

evaluated and experimental data for the longitudinal structure factors of elastic and 

inelastic materials during transitions Ji Ti = 0+ 0 to Jf Tf = 2+ 0 and 4+ 0 for 20Ne and 
24Mg nuclei. 

 
2. Theoretical 

The operator in the following defines the charge density of nuclei composed of A-

particles that are shaped like points [11]:  

ρ
ch

(1)(r) =
1

4π
∑ η

nℓj
(2j + 1)|Rnℓ(r)|

nℓj

2

                                                                                  (𝟏) 

where the state's livelihood percentage is represented by the parameter 𝜂𝑛𝑙𝑗 ,  𝑅𝑛𝑙(𝑟) is 

the harmonic oscillator radial wave function and (2j+1) is the occupation number of 

sub–orbits. The folding model was discovered and realized as highly beneficial for the 

phenomenology examination of nucleon-nucleus scattering results in relation to the 

ground state density of the objective and a two-body effective interaction [12]. The 

objective density was considered to be unrelated to the effective interaction in the 

model's initial applications. The pair correlation function can be used to determine an 

equation of the density of two-body operators that are suitable for finite nuclei based on 

the following relation:  

ρ(2)
(r⃗ 1,r⃗ 2)

= ρ(1)(r1)ρ(1)(r2) + C(r 1, r 2)                                                                                (𝟐)                                                                        

C(𝑟 1, 𝑟 2) is the center of mass (c.m.) and Ccm and Cp are the Pauli pair correlation 

functions [13], So that:
 

C(r 1, r 2) =̃ Cc.m.(r 1, r 2) + Cp(r 1, r 2)                                                                                       (𝟑) 

where: 

Cc.m.(r 1, r 2) =
r1. r2

2Aα2
(
1

r1

dρ
1

dr1
)(

1

r2

dρ
1

dr1
)                                                                                 (𝟒) 

Cp(r 1, r 2) =̃
1

A − 1
[1 −

c0

A − 1
e

kf
2

5
|r⃗ 1−r⃗ 2|] ρ(1)

(r⃗ 1)
ρ(1)

(r⃗ 2)
                                                    (𝟓) 

Substituting Eq.s (4) and (5) into Eq. (3) and using Eq. (3) in Eq. (2), we get: 
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         (6) 

 

where c0=3(π/5)1/2, α is the oscillator constant  312 99.0  A  and Kf
  is the local Fermi 

momentum. 

The ground state two-body distribution of charge-density ρ
ch

(2)
(r)  is provided by 

the expected result of the functional two-body distribution of charge-density generator 

in E. (6) stated as: 

ρ
ch

(2)(r) = ∑⟨ij|

i<j

ρ
(ri,rj)

(2) [|ij⟩ − |ji⟩]                                                                                            (𝟕) 

where ij  is the two particle wave function. The nuclei mean square charge radius is: 

⟨r2⟩
1

2⁄ =
4π

z
∫ ρ

ch

∞

0

(r)r4dr                                                                                                       (𝟖) 

The ground state distribution of charge density can be utilized in the computation 

method of the elastic electron scattering form factor from spin 0 nuclei (J=0). All 

coming and scattered waves of electrons are regarded as plane waves in the Plane Wave 

Born Approximation (PWBA), and the ground state distribution of charge density is 

spherically symmetric and real. Consequently, the form of the factor is the Fourier 

transform of the ground state distribution of charge density. Thus [14, 15]: 

F(q) =
4π

Z
∫ ρ

ο
(r)

∞

0

j0(qr)r
2dr                                                                                                 (𝟗) 

where 𝜌𝜊(𝑟)  is the ground state two-body charge density distribution represented in Eq. 

(7), j0(qr) = sin( qr)  (qr)⁄  is the momentum transfer from the incident electron to the 

target nucleus, and is the zeroth order of the spherical Bessel function. It is possible to 

express Eq. (9) as: 

F(q) =
4π

qZ
∫ ρ

ο
(r)

∞

0

sin( qr)rdr                                                                                              (𝟏𝟎) 

The form factors of inelastic longitudinal electrons scattering, which entail 

angular momentum J and momentum transition(q), are expressed as [10]: 

|FJ
L(q)|

2
=

4π

Z2(2Ji + 1)
| ⟨f‖T̂J

L(q)‖i⟩ |
2
|Fcm(q)|2|Ffs(q)|

2                                          (𝟏𝟏) 

where T̂J
L(q)  is the longitudinal electrons scattering generator. Consequently, it is 

possible to express the form factors of Eq. (11) in the form of matrix elements that are 

decreased in both angular momentum and isospin, as the nuclear states have established 

isospin  [16]:  
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(12) 

 is constrained through the subsequent select rule: 

|Tf − Ti| ≤ T ≤ Tf + Ti                                                                                                             (𝟏𝟐) 

 and TZ =
Z−N

2
  .  The platform  









 in Eq. (12) is the 3 – j symbol and decreased 

matrix. The configuration of mixing and other components within the spin and isospin 

space of the longitudinal operator between the last and first plurality of particles states 

of the structure can be expressed as a function of the One-Body Density Matrix 

(OBDM) components that are produced by the longitudinal operator's single particle 

matrix elements [17], i.e. 

⟨f ‖|T̂JT
L  |‖ i⟩ = ∑OBDMJT(i, f, J, a, b)

a,b

 ⟨b ‖| T̂JT
L  |‖ a⟩                                                  (𝟏𝟑) 

Additionally, the longitudinal operator's numerous particle-reduced matrix components, 

include two components: one for the model space and the other for the core. 

polarization matrix component [18]: 

⟨f‖ T̂J
L(τZ, q)‖i⟩ = ⟨f ‖T̂J

L
ms

(τZ, q)‖ i⟩ + ⟨f ‖T̂J
L

cor

(τZ, q)‖ i⟩                                                                 (𝟏𝟒) 

which the model space matrix component in Eq. (13) possesses the shape.  

⟨f ‖T̂J
L

ms

(τZ, q)‖ i⟩ = ei ∫ drr2jJ(qr) ρ
ms

J,τZ

∞

0

(i, f, r)                                                                (𝟏𝟓) 

The model space transition-density is ρ
ms

J(i, f, r). This sum is calculated as the 

product of the OBDM and the one-particle matrix components, and it is denoted by 

[18]:     

)r()r(Y),,,,,()r,,(
)(

, lnnlJ

ms

msjj

zJ

ms

RRjjjjJfiOBDMfi
Z





   
                                         (16)  

The core-polarization matrix component in Eq. (15) assumes the subsequent shape [14, 

15]: 

).r,,()r(rr),(ˆ

0

2 fi
J

qjdeiqTf

core

JiZ

cor

L

J  


                                                                         (17) 

where ρJ

 core 
 is the core-polarization transformation density, which is contingent upon the 

model utilized for core polarization. The objective is to capture the core-polarization 

taking implications into account. The group modes of nuclei are described by the model 
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space and the core-polarization transformation density, which is supplemented through 

the transition density. The overall density of transitions is calculated as: 

)r,,()r,,()r,,( fififi
ZZZ J

core

J

ms

J                                                                                       (18) 

The ℽ-transition and the excited state of nuclei through electron scattering are 

described using the Tassie model. It is the multipole analysis of inelastic scattering. This 

model is limited to the standard liquid drop model when a uniform charge distribution is 

assumed. The Tassie Model is an attempt to develop a model that is more elastic and 

can be modified to accommodate a non-uniform charge and mass distribution of 

density. The density of the core-polarization transformation is contingent upon the 

nucleus's ground state charge density, as per this model. The ground charge density is 

expressed according to the two-body charge-density distribution across every occupied 

shell, which includes the core, Within this task. The core polarization transition density 

is determined by the Tassie form, as per the collective modes of nuclei [19]: 

ρ
Jtz

core(i, f, r) = Ν
1

2
(1 + τz)r

J−1
dρ

o
(i, f, r)

dr
                                                                          (𝟏𝟗) 

During which is the constant of proportionality and the base state 2-body distribution of 

charge density, shown in Eq. (6). In this formulation, the Coulomb form factor is as 

follows: 

𝐹𝐽
𝐿(𝑞)

= √
4𝜋

2𝐽𝑖 + 1
 
1

𝑍
{∫ 𝑟2𝑗𝐽(𝑞𝑟)

∞

0

𝜌𝐽
𝑚𝑠(𝑖, 𝑓, 𝑟)  𝑑𝑟

+ 𝛮 ∫ 𝑑𝑟𝑟2
∞

0

𝑗𝐽(𝑞𝑟)𝑟
𝐽−1  

𝑑𝜌𝑜(𝑖, 𝑓, 𝑟)

𝑑𝑟
}𝐹𝑐𝑚(𝑞) 𝐹𝑓𝑠(𝑞)                                                     (𝟐𝟎) 

The radial integral ∫ dr
∞

0
rJ+1jJ(qr)

dρo(i,f,r)

dr
  can be written as:-   

∫
d

dr

∞

0

{rJ+1jJ(qr)ρ
o
(i, f, r)}dr − ∫ dr

∞

0

(J + 1)rJjJ(qr)ρ
o
(i, f, r)

− ∫ drrJ+1
d

dr

∞

0

jJ(qr)ρ
o
(i, f, r)                                                                                                 (𝟐𝟏) 

 in which the initial term is 0, the 2nd and  3ed terms are joined as:  

−q∫ drrJ+1ρ
o
(i, f, r)

∞

0

[
d

d(qr)
+

J + 1

qr
] jJ(qr)                                                                      (𝟐𝟐) 

Based on the recurssion link of the spherical Bessel function: 

[
d

d(qr)
+

J + 1

qr
] jJ(qr) = jJ−1(qr)                                                                                          (𝟐𝟑) 
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∴ ∫ dr
∞

0

 rJ+1jJ(qr)
dρ

o
(i, f, r)

dr
= −q∫ drrJ+1jJ−1(qr)

∞

0

ρ
o
(i, f, r)                                   (𝟐𝟒) 

Therefore, the form factor is as follows:  
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(25) 

The unchanging of proportionality N may be identified by evaluating the form 

factor at q=k, resulting in the following:  

Ν =
∫ drr2jJ(kr)ρ

JtZ

ms(i, f, r)
∞

0
− FJ

L(k)Z√
2Ji+1

4π

k ∫ drrJ+1ρ
o
(i, f, r)jJ−1(kr)

∞

0

                                                                   (𝟐𝟔) 

   B(CJ) =
[(2J+1)!!]2Z2 e2

4π k2J
|FJ

L(k)|
2
, at the photon's collision point(q=k), transitional 

amplitude B(CJ) is correlated with its form factor. 

Ν =
∫ drr2jJ(kr)ρJtz

ms∞

0
(i,f,r)−√

(2Ji+1)B(CJ)

(2J+1)!!
kJ

k ∫ drrJ+1ρo(i,f,r)jJ−1(kr)
∞

0

                                                                                    (𝟐𝟕)                                     

The coefficient of proportionality for open (closed) shell nuclei can be established 

by incorporating the determined (observed) measure of the reduced transitional 

amplitude B(CJ) through Eq. (28). 
 

3. Results and Discussion 
Figs. 1 and 2 illustrate the ground state charge density distributions (in fm-3) in 

relation to r (in fm) for 20Ne and 24Mg nuclei. Table 1 contains all the parameters 

necessary for the calculations including the dimension parameter of the harmonic 

oscillator (b), the occupancy probabilities (η
nℓj

)  of the states. Figs. 1 and 2 display the 

charge density distribution. The blue dashed line represents the one-body charge density 

distribution without correction; depending on Eq. (1), the solid blue line is the two-body 

charge density distribution and the black dotted-symbol line is the experimental data 

[20] in unit (nucleon. fm-3). 

From Figs. 1 and 2, it can be noted that the theoretical results are in good 

agreement with the experimental results concerning the two body charge density 

distribution, for the region 0.5 < r <2.5, we expound differ the one-body charge density 

distribution of charge density and two- body charge density distribution with the 

experimental data; the solid blue line indicates good agreement with experimental data 

for this region. The calculated elastic electron scattering form factors F(q) in Figs. 3 and 

4, the estimated F(q)'s contrasted to those of observational data for 20Ne and 24Mg 

nuclei, where the blue dashed line is elastic form factors without correction using Eqs. 

(1) and  (10); the solid blue line is the two-body elastic form factors with the correction 

using Eqs. (6) and (10); the black dotted- symbol line is the experimental data. In these 

figures, the calculated F(q)'s are plotted as a function of q, as shown in Figs. 3 and 4. 

The elastic form factor for one-body charge density distribution is not matching, on the 

other side, it was noted that when utilizing the two-body distribution of charge density, 
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the second diffraction appeared in value q = 2.4, which is an approach to the 

experimental data. 

 
Table 1: The variables employed in the calculations of the current study for each investigated 

nuclei. 

Nuclei 20Ne 24Mg 

b 1.77 1.85 

)( 22 fm  0.36 0.34 

η
1s1

2⁄
 1 1 

η
1p3

2⁄
 1 1 

η
1p1

2⁄
 1 1 

η
1d5

2⁄
 0.16667 0.5 

η
2s1

2⁄
 0.5 0.5 

⟨r2⟩
theo.
1/2

 3.027 3.125 

⟨r2⟩exp.
1/2

[15] 3.005 3.020 

Figure 1: The charge density distribution for 20Ne nucleus. 

Figure 2: The charge density distribution for 24Mg nucleus. 
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Figure 3: The elastic form factors for 20Ne nucleus.       

Figure 4: The elastic form factors for 24Mg nucleus. 

 

A formula for the transfer charge density, Eq. (19), was employed to determine 

the inelastic longitudinal electron scattering form factors F(q). The OXBASH code was 

used to calculate the OBDM components necessary for the calculations of the form 

factors of open shell nuclei, resulting in the model space transfer density being 

determined by Eq. (17) [21] using the interaction matrix elements of USDB (Universal 

sd-shell B) for 2s-1d shell nuclei [22]. The theoretical determination of the factor N is 

not indicative of an adjustable parameter. Within this section, the longitudinal C2 form 

factors that were computed are illustrated in relation to the momentum transfer (q) for 

the transitions, 0+

 
→ 2+  with an observed Ex=1.63MeV [23] and experimental value of 

B(C2) =278.3 e2.fm4 in 20Ne, with an observed Ex=1.37MeV [23] and experimental 

value of B(C2) = 404.7 e2.fm4 in 24Mg. In Figs. 5 and 6, the blue dashed curves 

represent the influence of the model space, and these are adjusted for configuration 

mixing. The blue dash-dotted curves symbolize the core polarization investment 

determined by Eq. (20), which is adjusted for the effect of two bodies. The blue solid 

line is the overall investment, which is calculated by combining the model space and the 

core polarization impacts determined by Eq. (21). The black dotted-symbol line 

represents the experimental data. The results shown here demonstrate that the 

experimental data cannot be replicated by the model space's contributions, as it 
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understates the data for every momentum transition amounts. When the model space 

(the solid curves) as well as the effect of core polarization are considered, the 

longitudinal C2 form factors are improved, resulting in the calculated outcomes being in 

an acceptable representation of the experimental data for every value of momentum 

transition q. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Inelastic longitudinal C2 form factors for 24Mg nucleus. 

 

The graphs shown in Figs. 7 and 8 illustrate the inelastic longitudinal C4 form 

factors of 20Ne and 24Mg nuclei, respectively. The computed longitudinal C4 form 

factors are depicted in relation to the momentum transfer q for the transitions in 20Ne 

and 24Mg with observed excitation energies of 4.25MeV and 6.1MeV, respectively. The 

experimental B(C4) of the above nuclei are 32500 and 36000 [e2fm4], respectively [23-

25].  In these figures, the blue-dashed shapes symbolize the influence of the model 

space, which is adjusted for configuration mixing. The blue dash-dotted shape 

symbolizes the core polarization investment, which is adjusted to the effect of two 

bodies. The blue-solid line is the overall investment, calculated by combining the model 

space and the core polarization impacts. The black dotted-symbol line is the 

experimental data. These graphs demonstrate that the model space cannot accurate 

explain the entire area of momentum transfer with the experimental data. However, the 

Figure 5: Inelastic longitudinal C2 form factors for 20Ne nucleus. 
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outcomes of the longitudinal C4 form factors become logical and consistent with the 

experimental data throughout the entire area of momentum transfer “q”, as evidenced by 

the solid curves in these graphs. 

Figure 7: Inelastic longitudinal C4 form factors for 20Ne nucleus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Inelastic longitudinal C4 form factors for 24Mg nucleus. 
 

4. Conclusions  
1. Considering the effects of the center of mass and Pauli pair correlation functions and 

higher occupation probabilities generally, it is crucial to achieve a high degree of 

alignment between the estimates of charge density distributions with all of the 

experimental data of 20Ne and 24Mg nuclei. 

2. The fixed characteristics and energy levels can be accurately described by the sd-shell 

models; however, they are less effective in characterizing dynamical characteristics, 

including the rates of C2 and C4 transitions and the form factors of electron 

scattering.  

3. The core-polarization impacts improve the form factors and bring the mathematical 

predictions of the longitudinal form factors closer to the experimental data in the C2 

and C4 transitions. 
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 Ne02 لنوىمرنة ل والغيرعوامل التشكل للإستطارة للإلكترونية المرنة توزيعات كثافة الشحنة، 

 Mg24و

 
الد عيسىخحسين 

1
وغيث نعمة فليح 

1 

 قسم الفيزياء، كلية العلوم، جامعة بغداد، العراق1

 الخلاصة 
تم حساب توزيعات كثافة الشحنة باستخدام انموذج الطي الذي تم تطبيقه لدراسة تأثير مركز الكتلة واقتران زوج باولي على كثافة الشحنة 

. يمكن اشتقاقها من حيث تصحيح Mg24و Ne20بالاعتماد على التفاعلات الفعالة بين الجسمين، كصيغة لكثافة الجسمين المطبقة على 
وجذر متوسط  F(q)، ومن خلالها تم حساب عوامل التشكل للإستطارة للإلكترونية المرنة Mg24و  Ne20ي. بالنسبة إلىالارتباط الزوج

عوامل التشكل الطولية للإستطارة للإلكترونية غير المرنة المرتبطة بانتقالات فضاء البرم تم حساب  .1/2〈𝑟2〉 نصف قطر الشحنة مربع 

𝐽𝑖)و T = 0النظري 
𝜋 → 𝐽𝑓

𝜋) ) 0+

 
→ +0 (و   )+2

 
→ كان مصمما كدالة موجية داخل فضاء  Mg24و Ne20 للنوى   )+4

، غير قادرة على إنتاج دالة موجية مقبولة 1𝑑3/2و 1𝑑5/2 , 2𝑠1/2، والتي تم تحديدها بواسطة المدارات model space)النموذج)

الى جانب الصيغة الرياضية المشتقة لتوزيعات كثافة  Tassie على شكل أنموذجأن تأثيرات استقطاب القلب حسبت بالاعتماد بشكل فعال. 

لقد وجد بان تأثير استقطاب القلب الذي يمثل نمط تجميعي يكون جوهريا للحصول على توافق جيد  ..نموذج الطياالشحنة النووية باستخدام 

 ة لجميع النوى قيد الدراسة.والقيم العملي (F(q)'s) بين حسابات الاستطارة الطولية غير المرنة
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