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Abstract Article Info. 

Adaptive optics revolutionizes telescopic resolution but faces cost, 

complexity, and calibration hurdles. Neural network adaptive optics (NNAO) 

offers promise by using neural networks to tailor corrections to telescopes and 

atmospheric conditions, by passing calibration and sensors. This MATLAB-based 

study examines NNAO's impact on astronomical image quality, revealing it as a 

cost-efficient solution that enhances adaptive optics in astronomy. The numerical 

simulation results were encouraging, with a compensation rate exceeding 50% due 

to favorable monitoring conditions.  The results indicate that the dominant factor 

affecting image quality is the variance of wavefront aberrations. The Strehl ratio 

(SR) decreases from an average of 0.548 for a variance of 0.2 to 0.020 for a 

variance of 0.6, while the mean squared error (MSE) increases from an average of 

0.613 to 5.414. However, the effect on peak signal-to-noise ratio (PSNR) is 

inconclusive. Furthermore, it was found that increasing the number of neurons and 

training ratio does not significantly impact the results obtained, but it noticeably 

affects the computational time required. 
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1. Introduction 
The Earth's atmosphere introduces distortions to light passing through it, resulting 

in blurred and distorted images of astronomical objects. To address this issue, adaptive 

optics (AO) technology has been developed to compensate for these distortions in real-

time, thereby improving image quality and facilitating new discoveries in the field of 

astronomy [1-3]. Traditional AO systems typically incorporate a wavefront sensor to 

measure atmospheric distortions and a deformable mirror to correct them. However, 

these systems encounter limitations when correcting nonlinear aberrations and 

necessitate intricate models to estimate the wavefront distortions accurately [4-6]. 

Machine learning in AO was investigated as early as the 1990s [7-9]. At that time, 

artificial neural networks (ANN) were considered to be a good alternative for the 

wavefront sensing of single-aperture and array telescopes in the multiple mirror 

telescope (MMT) [10-12]. In recent years, a promising alternative called neural network 

adaptive optics (NNAO) has emerged to address these challenges. NNAO harnesses the 

power of neural networks to acquire the necessary correction parameters specific to a 

telescope and prevailing atmospheric conditions, thereby eliminating the need for 

calibration and wavefront sensors and overcoming the limitations in AO systems [13-

15]. NN-based AO systems leverage machine learning algorithms to learn and model 

the nonlinear relationship between distorted and corrected wavefronts. This enables 

real-time correction of complex wavefront distortions without relying on detailed 

models, thereby enhancing the efficiency and accuracy of the AO process [16, 17]. Two 

kinds of machine learning-based methods are proposed to improve the Shack-Hartmann 

wavefront sensor (SHWFS) performance. One is to improve the gradient-based method, 

such as building the relationship between aberrations and gradients with nonlinear 

fitting tools such as ANN instead of simple matrix multiplication, or improving the spot 

centroid accuracy by doing the spot classification with ANN before centroid calculation. 
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The other is to extract the aberration from the SHWFS image directly with deep 

learning instead of calculating the gradients. In some applications, traditional special 

wavefront sensors (WFSs) are not allowed, and the imaging setup can be used as the PD 

WFS or single-image phase retrieval WFS. In these cases, deep learning can be used to 

solve the nonlinear phase retrieval problem without many iterations required by 

traditional Gauss-Seidel or Stochastic parallel gradient descent (SPGD) methods, etc. 

Besides improving the accuracy and speed of traditional narrow field-of-view WFS, 

deep learning can also be used to improve the performance of tomography WFS [18-

20]. ANN possess the capability to understand the relationship between wavefront 

sensor data and necessary wavefront adjustments. This ability enables rapid and precise 

aberration compensation, outperforming conventional techniques in terms of both speed 

and accuracy. 

This paper explores using neural networks to learn and apply the necessary 

corrections specific to a particular telescope and prevailing atmospheric conditions. A 

MATLAB implementation of NNAO is presented, and its effectiveness in compensating 

for atmospheric distortions and improving image quality in astronomical observations is 

demonstrated.  

 

2. Von Karman Atmospheric Turbulence Model 
 The Earth's atmosphere is a complex and heterogeneous medium consisting of 

two types of media: discrete turbid particles and a continuous turbulent medium 

composed of moving molecules. These media give rise to various optical phenomena, 

including energy attenuation, intensity scintillation, angle-of-arrival fluctuations, beam 

wander, beam spread, and spot distortion [21-23]. These phenomena depend on 

differential optical path lengths rather than absolute values, and their random variations 

are described by spatial statistics and structure functions [24-26]. 

The structure function (  ( )), which measures the mean square difference in 

the index of refraction, n(r), between two spatial locations,   and   , is defined as [27-

29]:  

  ( )   〈| (  )   (  ))|
 〉                                                                                                    ( ) 

 where r is        . 

Now, over the inertial sub-range,    and   , Kolmogorov’s theory further 

establishes the structure function and can be expressed in terms of structure constants 

[30-32]: 

  ( )   {
  
                 

  
    

                    
                                                                                         ( ) 

The constant,   
  quantifies the strength of the optical turbulence. A   

  value, on 

the order of magnitude of 10
-17

 m
-2/3

, is considered a weak turbulence, and strong 

turbulence values are on the order of 10
-13

 m
-2/3

. The findings from atmospheric 

measurements indicate that the Earth's atmosphere contains a combination of 

Kolmogorov turbulence at lower altitudes and non-Kolmogorov turbulence at higher 

altitudes. Currently, two models exist to describe the structure of atmospheric 

turbulence in the Earth's atmosphere. The first model is a two-layer model, which 

proposes the turbulence in atmospheric measurements. Atmospheric turbulence in the 

Earth's atmosphere exhibits Kolmogorov turbulence at lower levels and non-

Kolmogorov turbulence at higher levels. Two models describe the structure of 

atmospheric turbulence: a two-layer model and a three-layer model [33-35]. The two-
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layer model posits Kolmogorov turbulence in the troposphere and non-Kolmogorov 

turbulence in the stratosphere. The revised two-layer model incorporates consistency 

between the structure of the refractive index and power spectral density. The three-layer 

model expands on the two-layer model by adding non-Kolmogorov turbulence in the 

free atmosphere.  

    (   )          
 ( )                                                                                                     ( ) 

    (   )           
 ( )                                                                                                   ( ) 

Eqs (3), (4), and (5) represent the mathematical expressions for the turbulence in 

each layer, with varying turbulence parameters and wave numbers [36-38]. where: z is a 

propagation distance that varies between z = 0 and z = L,   
  is Kolmogorov turbulent 

index of refraction structure parameter in the boundary layer(has unit of m
-2/3

),    
  is 

the non-Kolmogorov turbulent index of refraction structure parameter in the free 

troposphere (has unit of m
-1/3

), and    
  is the non-Kolmogorov turbulent index of 

refraction structure parameter in the stratosphere(of m
-2

units). It is important to note that 

the structure of atmospheric turbulence varies with altitude and atmospheric conditions 

[39-41]. The coherence diameter of the atmosphere, denoted by r0, is a commonly used 

parameter. It influences the phase power spectral density (PSD) for the Von Karman 

refractive index, as described by Eq. (6) [42-44]: 

  
  ( )       

    
 (     

 )                                                                                            ( ) 

where: k is the transverse wavenumber, k < 1/L0, r0 is Fried coherent diameter, and k0 = 

2π/L0 where L0 is the outer scale. 

 

3. The Main Steps of Neural Network based Adaptive Optics  

The implementation of a Neural Network-based AO (NN-based AO) system can 

be divided into the main steps as follows: 

1. Data preparation: The initial stage in constructing a neural network is to ready the 

data for the network's training. This process encompasses the gathering and 

arrangement of data, as well as cleaning and preprocessing. Specifically, it entails 

capturing images of a designated source, such as a star, utilizing a wavefront sensor 

and deformable mirror. The reference source should have a bright and stable point 

spread function (PSF) to ensure an accurate measurement of the wavefront distortion. 

The images are captured with different levels of wavefront distortion introduced by 

the deformable mirror [45]. 

2. Model definition: After the data has been prepared, the next step is to define the 

neural network model architecture. This involves selecting the appropriate type of 

network, specifying the number and types of layers, and setting the hyperparameters 

such as learning rate, batch size, and activation functions [46]. 

3. Training the network: Once the model is defined, the network is trained on the 

prepared data. During training, the network learns to recognize patterns and make 

predictions based on the input data. This involves using an optimization algorithm 

such as gradient descent to adjust the weights and biases of the network based on the 

errors or losses between the predicted and actual outputs [47]. 

4. Evaluation: After training, the performance of the network is evaluated on the 

validation set to ensure that it is not overfitting the training data. Various metrics 

such as accuracy, precision, and recall can be used to evaluate the performance [48]. 
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5. Testing: Finally, the trained network is tested on the test set to measure its real-world 

performance. The testing results can be used to make improvements to the network 

or to fine-tune the hyperparameters for better performance [49]. 

6. Deployment: Once the model has been evaluated and tested, it can be deployed in a 

real-world application for which it was designed. In some cases, the model may need 

to be retrained periodically with new data to maintain its performance over time   

[50-52]. 

Following these steps, an NN-based AO system can be implemented to effectively 

correct wavefront distortions and improve image quality in astronomical observations. 

 

4. Multilayer Perceptron Neural Network Algorithm 
Fig. 1 shows the various aspects of the multilayer perceptron neural network 

(MLP) algorithm, its progress, performance plots, training state, error histogram, and 

regression. Note that all the figures in the following paragraphs are the results of our 

numerical simulation for the multilayer perceptron (MLP) neural network algorithm. 

 

Figure 1: Graphical user interface (GUI) tool. 

 

The neural network training (nntraintool) is a graphical user interface (GUI) 

MATLAB tool designed for training neural networks interactively as in Fig. 1. It offers 

insights into training progress and performance. An explanation of its sections and 

components is as follows: 

1- Algorithms:   

o The neural network used is a feedforward MLP neural network with a single 

hidden layer.  

o The number of hidden units in the hidden layer is set to 50. 

o The network is trained using the backpropagation algorithm, which involves 

iteratively adjusting the weights and biases to minimize the error between the 

predicted and desired wavefront corrections. 
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2- Progress and Plots:  

The nntraintool GUI provides several plots to visualize the training progress and the 

neural network performance. These plots are updated dynamically during the 

training process. The following plots are typically included:  

2.1. Performance Plot: Fig. 2 displays the training and testing performance of 

the neural network over epochs or iterations. It shows how the performance 

metric (e.g., mean squared error) changes as training progresses. The goal is 

to minimize the performance value. 

o The program trains the neural network using the training data, consisting of 

wavefront sensor measurements and desired wavefront corrections 

o The network is trained for a specified number of epochs (1000 epochs in this case) 

using the training options. 

o After training, the network is used to predict wavefront corrections for a new 

wavefront sensor measurement.  

 

2.2.Training State Plot: Fig. 3 represents gradient, adaptive learning rate 

parameter (mu) and validation failures (val. fail.) that provide insights into 

the training process and the performance of the neural network during 

different epochs. 

o Gradient subplot: The gradient plot shows the gradients of the network's 

parameters (weights and biases) during training. It helps understand how the 

network's parameters are adjusted to minimize the error function. Monitoring the 

gradient helps to ensure that the network is converging towards a solution. Ideally, 

the gradient should decrease over epochs as the network learns to make more 

accurate predictions. 

o The adaptive learning rate parameter (mu) subplot: The "mu" figure shows the 

adaptive learning rate parameter (mu) over epochs.  The mu parameter represents 

the current learning rate at each epoch. Monitoring the mu values helps 

understand how the learning rate adapts over time and whether it is converging or 

fluctuating. Consistently decreasing or stabilizing mu values indicates a good 

learning rate adjustment strategy. 

 

 

 

Figure 2: Performance Plot. 
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Figure 3: Training State Plots. 

 

o Validation Failures (val. fail.) subplot: The val. fail. figure depicts the number of 

validation failures or misclassifications during training. It measures the 

performance of the neural network on a validation dataset, which is separate from 

the training dataset. By monitoring the val. fail., it is possible to assess the 

generalization capability of the network and identify epochs where the network's 

performance may have deteriorated.  

The goal is to minimize the number of validation failures over epochs, indicating 

improved accuracy and generalization.  

2.3. Error Histogram: The error histogram (Fig. 4) represents the distribution of 

errors or residuals between the desired wavefront corrections and the 

predicted corrections. It provides insights into the error distribution and 

helps identify any bias or skewness.  

Figure 4: Error Histogram. 

a 

b 

c 
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2.3 Regression Plot: The regression plot (Fig. 5) shows the relationship between 

the desired wavefront corrections and the predicted corrections. It helps 

assess the correlation and fit between the predicted and desired values. The 

predicted wavefront corrections are compared with the desired corrections 

to evaluate the accuracy of the regression model.  

In Fig. (5 a,b,c,d), the y-axis represents the performance metric (accuracy) 

calculated on training, validation, test, and all test datasets, respectively. 

5. Numerical Simulation Steps of NN Based Adaptive Optics System 

The provided program is a numerical computer simulation of an NN-based AO 

system. A revised description of the simulation steps is as follows: 

1. Set up the simulation parameters, including the wavelength (lambda), wave number 

(k), Fried parameter (r0), outer scale (L0), aperture diameter (D), number of grid 

points (n), simulation domain size (L), and grid spacing (dx). 

2. Generate a 2D wavefront sensor measurement by creating a random phase screen 

using the Von Karman model, and the resulting matrix is scaled by the wavefront 

variance. 

3. Normalize the wavefront sensor measurements and desired wavefront corrections by 

subtracting the mean and dividing by the standard deviation. 

4. Reshape the normalized wavefront sensor measurements and desired wavefront 

corrections into column vectors. 

5. Split the data into training and testing sets using a specified training data ratio. 

6. Extract the training and testing data based on the indices obtained from the previous 

step. 

7. Create a feedforward neural network with a specified number of hidden 

units/neurons. 

8. Train the neural network using the training data. 

Figure 5: Regression Plots (a, b, c, d) for training, validation, test and all regressions 

progress respectively.   

a b 

c d 
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9. Generate a new wavefront sensor measurement by creating a random phase screen 

using the Von Karman model and scale it by the wavefront variance. 

10. Normalize the new wavefront sensor measurement using the mean and standard 

deviation of the original wavefront sensor measurements. 

11. Pass the normalized new measurement through the trained neural network to obtain 

the predicted wavefront corrections. 

12. De-normalize the predicted wavefront corrections by multiplying by the standard 

deviation and adding the mean of the desired wavefront corrections. 

13. Reshape the predicted wavefront corrections back into a 2D matrix with the same 

dimensions as the original wavefront. 

14. Calculate performance metrics such as mean squared error (MSE), peak signal-to-

noise ratio (PSNR), and Strehl ratio, which is the maximum intensity of the desired 

wavefront corrections divided by the square of the maximum absolute value of the 

predicted corrections. 

15. Display the results using subplots. The first subplot shows the original wavefront 

sensor measurements; the second subplot shows the desired wavefront corrections; 

the third subplot shows the new wavefront sensor measurement; the fourth subplot 

shows the predicted wavefront corrections and an additional figure displays the 

difference between the new measurement and the predicted corrections. 

 

6. Numerical Simulation Results and Discussion  
The utilization of a neural network for adaptive optics compensation is 

demonstrated through a numerical simulation. In this simulation, the network is trained 

using wavefront sensor measurements and the desired wavefront corrections. Once 

trained, the network is applied to predict corrections for new measurements. The 

numerical simulation explores various conditions related to turbulence strength, training 

data ratio, and the number of neurons in the hidden layer. These conditions impact the 

performance of the neural network for adaptive optics compensation. Based on these 

different conditions, the simulation generates a visual representation of the results in the 

form of a figure with four subplots (Figs. 6, 8). The wavefront representation used in the 

simulation is derived from the Von Karman turbulence model.  

For different conditions related to the turbulence strength (variance amount of the 

simulated wavefront aberrations), training data ratio, and the number of neurons in the 

hidden layer, the simulation generates a visual representation of the results through a 

figure consisting of four subplots (Figs. 6, 8).  

o Subplot 1 presents the original wavefront sensor measurements. 

o Subplot 2 displays the desired wavefront corrections. 

o Subplot 3 show cases of the new wavefront sensor measurement. 

o Subplot 4 illustrates the predicted wavefront corrections. 

It is important to note that the wavefront representation in the simulation is 

derived from the Von Karman turbulence model, which accurately captures the 

characteristics of the simulated wavefront aberrations. Furthermore, separate Figs. 7, 9 

are dedicated to show the difference or the residual error between the new measurement 

and the predicted corrections. 

To assess the effectiveness of the neural network in compensating for wavefront 

aberrations under various conditions, Tables 1-9 present the performance metrics, 

including mean square error (MSE), peak signal-to-noise ratio (PSNR), and Strehl ratio 

(SR). These metrics provide valuable insights into the network's performance under 

different conditions of turbulence strength, training data ratio, and hidden layer neuron 

count. By examining these tables, one can gain insights into the performance of the 

neural network in terms of its ability to minimize MSE, maximize PSNR, and improve 
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the SR. These metrics serve as quantitative indicators to evaluate the effectiveness of 

the neural network compensation. 

Figure 6: Von Karman phase screen (wavefront) with variance 0.2, training ratio 90% and 

neuron’s no. 50. 
 

Figure 7: Residual error. 

Figure 8: Von Karman phase screen (wavefront) with variance 0.6, training ratio 90% and 

neuron’s no. 50. 
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Figure 9: Residual error. 

 

 
Table 1: Performance metrics MSE, PSNR 

and SR for the first case. 

Training Ratio=90%, Variance=0.2, 

Neurons=50 

No. iteration MSE PSNR SR 

1 14 0.570 3.808 0.560 

2 20 0.628 4.225 0.533 

3 14 0.852 2.330 0.426 

4 815 0.371 5.477 0.689 

5 41 0.934 5.748 0.392 

6 11 0.796 2.023 0.450 

7 119 0.543 3.496 0.580 

8 11 0.459 4.208 0.631 

9 1000 0.405 6.805 0.667 

10 19 0.577 2.047 0.561 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Performance metrics MSE, PSNR 

and SR for the second case. 

Training Ratio=60%, Variance=0.2, 

Neurons=50 

No. Iteration MSE PSNR SR 

1 1000 0.762 5.178 0.466 

2 17 0.351 6.703 0.703 

3 18 0.832 5.050 0.434 

4 194 0.358 7.418 0.698 

5 18 0.667 6.328 0.513 

6 12 0.650 3.984 0.522 

7 39 0.349 7.263 0.704 

8 10 0.899 5.420 0.406 

9 17 0.646 7.066 0.523 

10 17 0.453 8.427 0.635 
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Table 3: Performance metrics MSE, 

PSNR and SR for the third case. 

Training Ratio=30%, Variance=0.2, 

Neurons=50 

Iteration MSE PSNR SR 

11 1.095 2.352 0.334 

1000 0.505 6.306 0.603 

14 0.370 4.490 0.690 

50 0.494 5.705 0.610 

1000 0.345 6.979 0.707 

18 0.581 6.902 0.559 

12 0.481 7.612 0.618 

7 0.469 5.074 0.625 

9 0.438 5.691 0.645 

12 0.556 4.862 0.573 

Table 4:Performance metrics MSE, PSNR 

and SR for the fourth case. 

Training Ratio=90%, Variance=0.6, 

Neurons=50 

No. Iteration MSE PSNR SR 

1 14 4.642 6.052 0.009 

2 1000 11.341 2.785 01.18e-5 

3 75 3.839 7.707 0.0215 

4 25 2.904 5.830 0.054 

5 24 7.260 3.826 7.030e-4 

6 9 3.227 6.786 0.0397 

7 9 6.706 3.984 0.0012 

8 94 4.029 4.196 0.017 

9 12 7.376 2.320 6.26e-4 

10 254 2.823 8.780 0.0594 

Table 5: Performance metrics MSE, 

PSNR and SR for the fifth case. 

Training Ratio=60%, Variance=0.6, 

Neurons=50 

Iteration MSE PSNR SR 

1000 7.483 4.012 5.624e-4 

1000 5.590 3.231 0.0037 

17 4.397 7.814 0.0123 

12 3.098 7.765 0.045 

15 6.398 5.996 0.001 

8 5.651 5.506 0.003 

27 3.71 7.675 0.024 

20 5.978 5.275 0.002 

42 3.331 5.449 0.0357 

1000 6.402 4.115 0.0017 
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Table 6: Performance metrics MSE, PSNR 

and SR for the sixth case. 

Training Ratio=30%, Variance=0.6, 

Neurons=50 

No. Iteration MSE PSNR SR 

1 9 4.353 4.727 0.0129 

2   14  6.174 4.097 0.002 

3 8 2.862 7.076 0.057 

4 14 7.58 6.198 5.102e-4 

5 27 7.614 3.138 4.931e-4 

6 1000 4.062 6.877 0.017 

7 10 3.222 7.747 0.039 

8 13 6.251 2.867 0.0019 

9 11 6.936 4.384 9.715e-4 

10 8 6.412 6.175 0.0016 

Table 7: Performance metrics MSE, PSNR 

and SR for the seventh case. 
Training Ratio=90%, Variance=0.6, 

Neurons=100 

Iteration MSE PSNR SR 

7 6.79 7.003 0.0011 

1000 6.259 2.954 0.0019 

10 4.636 6.547 0.0097 

1000 3.379 4.774 0.034 

11 5.577 3.863 0.0038 

11 4.92 5.711 0.0073 

19 4.133 5.95 0.16 

17 6.217 5.429 0.002 

15 4.582 3.331 0.0102 

8 3.14 9.041 0.043 

Table 8: Performance metrics MSE, PSNR 

and SR for the eightieth case. 

Training Ratio=60%, Variance=0.6, 

Neurons=100 

No. Iteration MSE PSNR SR 

1 12 4.27 6.72 0.014 

2 12 2.545 5.806 0.078 

3 21 4.057 5.435 0.0173 

4 477 4.764 3.706 0.0085 

5 12 5.624 7.952 0.0036 

6 16 3.090 7.903 0.0455 

7 9 4.817 6.638 0.0081 

8 8 2.957 10.332 0.052 

9 12 6.231 6.184 0.002 

10 28 5.793 6.167 0.003 
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In each subplot of Figs. 10-18, representing the nine different cases, a scatter plot 

of the data points is presented. This scatter plot allows for the visualization of the 

relationship between the variables being studied. Along with the scatter plot, a curve fit 

is applied to the data points, which provides a smooth representation of the underlying 

trend or pattern observed in the data. This curve fit aids in understanding the overall 

behavior and relationship between the variables under consideration in the context of 

the specific case being examined. 

 

 

Figure 10: Performance metrics for first case. 

 

Table 9: Performance metrics MSE, 

PSNR and SR for the ninth case. 

Training Ratio=30%, Variance=0.6, 

Neurons=100 

Iteration MSE PSNR SR 

9 3.404 8.353 0.0332 

9 4.359 4.485 0.0123 

10 4.834 8.568 0.008 

8 4.03 5.001 0.0178 

12 5.969 3.874 0.0026 

10 4.728 3.424 0.0088 

12 5.274 6.369 0.0051 

7 3.672 6.392 0.0253 

115 3.570 4.226 0.0281 

16 5.759 5.848 0.0032 

a b 

c d 
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Figure 11: Performance metrics for second case. 

 

 

Figure 12: Performance metrics for third case. 
 

a b 

c d 

a b 

c d 
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Figure 13: Performance metrics for fourth case. 

 

Figure 14: Performance metrics for fifth case. 
 

 

a b 

c 
d 

a b 

c d 



Iraqi Journal of Physics, 2024                                                                                   Raaid Nawfee Hassan 

 68 

 

 

Figure 15: Performance metrics for sixth case. 

 

 

Figure 16: Performance metrics for seventh case. 

a b 

c d 

a b 

c d 
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Figure 17: Performance metrics for eightieth case. 

 

 
 

Figure 18: Performance metrics for ninth case. 

a b 

c 
d 

a b 

c d 
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Using the polynomial curve fits implies that the relationships between the 

variables under investigation may not adhere strictly to a linear pattern. The subplots (a, 

b, c, d) in Figs. 10-18 depict the relationships between SR vs MSE, PSNR vs MSE, SR 

vs PSNR, and iteration vs SR, respectively.  

In the first case (Training Ratio=90%, Variance=0.2, Neurons=50), Fig. 10, note 

that as the MSE decreases, the PSNR and SR generally increase, indicating an inverse 

relationship between MSE and PSNR & SR. The relationship between iteration and SR 

displays varying trends, suggesting a complex association between these variables. 

In the second case (Training Ratio=60%, Variance=0.2, Neurons=50), Fig. 11, 

similar trends are observed, with lower MSE values corresponding to higher PSNR and 

SR. However, the relationship between iteration and SR seems inconsistent. 

Moving on to the third case (Training Ratio=30%, Variance=0.2, Neurons=50), 

Fig. 12, comparable patterns in the relationships between the performance metrics are 

identified, albeit with some variations in the specific values. 

In the fourth case (Training Ratio=90%, Variance=0.6, Neurons=50), Fig. 13, and 

the fifth case (Training Ratio=60%, Variance=0.6, Neurons=50), Fig. 14, the 

relationships between the metrics exhibit different characteristics due to the changes in 

training ratio and variance, leading to distinct trends in the data. 

In the sixth case (Training Ratio=30%, Variance=0.6, Neurons=50), Fig. 15, and 

the seventh case (Training Ratio=90%, Variance=0.6, Neurons=100), Fig. 16, shows 

further variations in the relationships between the performance metrics, indicating the 

impact of different parameters on the model's performance. 

Finally, in the eighth case (Training Ratio=60%, Variance=0.6, Neurons=100), 

Fig. 17, and the ninth case (Training Ratio=30%, Variance=0.6, Neurons=100), Fig. 18, 

diverse trends in the relationships between the metrics are still noted, highlighting the 

influence of training ratio and neuron count on the model's performance. 

Figure 19: MSE as a function of iteration. 

 

Overall, the analysis of the relationships between SR vs. MSE, PSNR vs. MSE, 

SNR vs. PSNR, and iteration vs. SR across the different cases reveals the complex and 

multifaceted nature of these interactions, emphasizing the need for a comprehensive 

understanding of the underlying factors influencing the performance metrics in the 

given scenarios. 

 



Iraqi Journal of Physics, 2024                                                                           Vol. 22, No. 1, PP. 35-74 

<6 

 

Figure 20: SR as a function of iteration. 

 

To comprehensively assess the effectiveness of NNAO compensation, all cases 

(the letters A, B, I, in plot’s legend represent the previous cases: 1
st
, 2

nd
, …9

th
, 

respectively) can be evaluated collectively by plotting MSE, SR, and PSNR together. 

By examining these combined plots, one can understand how the MSE, SR, and PSNR 

values vary and interact with each other under different simulation conditions. This 

evaluation helps in assessing the overall effectiveness of NNAO compensation for 

wavefront aberrations. 

 

Figure 21: PSNR as a function of iteration. 

 

Through the three above Figs. 19-21, a comparison was made between the 

performance metrics (MSE, SR, and PSNR) and the highest criterion affected by the 

related conditions (variance, training ratio and number of neurons). The results showed 

that the variance of the wavefront aberration was the dominant, as shown in SR, which 

decreases from an average value of 0.548 for a variance of 0.2 to 0.020 for a variance of 

0.6, MSE increases from an average value of 0.613 for a variance of 0.2 to 5.414 for a 

variance of 0.6, but for PSNR, the effect is not apparent. Also, increasing the number of 

neurons and the training ratio does not affect the results obtained, but the time 

consumed is clearly affected. 
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7. Conclusions 

In this numerical computer simulation, a neural network model was trained to 

perform adaptive optics phase compensation based on wavefront sensor measurements. 

After training the model, a new wavefront sensor measurement was generated, 

normalized, and used to predict wavefront corrections using the MLP trained neural 

network. The simulation included additional sections where the performance metrics 

were calculated for different conditions with varying training ratios, variances, and the 

number of neurons in the hidden layer. The average performance metrics for each case 

were computed and plotted against each other to analyze the impact of these parameters 

on the model's performance. In summary, the variance of the wavefront aberration 

emerged as the dominant factor, as evidenced by the decrease in SR from an average 

value of 0.548 for a variance of 0.2 to 0.020 for a variance of 0.6, and the increase in 

MSE from an average value of 0.613 for a variance of 0.2 to 5.414 for a variance of 0.6. 

However, the impact on PSNR remains unclear. Furthermore, increasing the number of 

neurons and the training ratio did not appear to affect the results obtained, but it 

significantly impacted the time consumed. This suggests that more complex neural 

network architectures may be necessary to achieve more accurate wavefront corrections. 
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 طرابات الجوية باستخدام البصريات التكيفية للشبكة العصبيةتعويض طور تشوه الاض

 

رائد نوفي حسان
1 

 انعشاق تغذاد، جايعح تغذاد، كهٍح انعهٕو، لسى انفهك ٔانفضاء،6

 الخلاصة
ذمذو انثصشٌاخ  .ذحُذز انثصشٌاخ انركٍفٍح شٕسج فً ٔضٕحٍح انرهسكٕب ٔنكُٓا ذٕاجّ عمثاخ ذرعهك تانركهفح ٔانرعمٍذ ٔانًعاٌشج

رخذاو انشثكاخ انعصثٍح نرصًٍى ذصحٍحاخ نهرهسكٕتاخ ٔانظشٔف انجٌٕح، ٔذجأص انًعاٌشج ٔعذاً تاس (NNAO) انركٍفٍح نهشثكح انعصثٍح

عهى جٕدج انصٕسج انفهكٍح، ٔذكشف عُٓا كحم فعال  NNAO فً ذأشٍش MATLAB ذثحس ْزِ انذساسح انًثٍُح عهى .ٔأجٓضج انرحسس

%   5:ًحاكاج انعذدٌح يشجعح حٍس ذجأص يعذل انرعٌٕض ٔكاَد َرائج ان. يٍ حٍس انركهفح ٌعضص انثصشٌاخ انركٍفٍح فً عهى انفهك

ذُخفض   .إنى أٌ انعايم انًًٍٍٓ انزي ٌؤشش عهى جٕدج انصٕسج ْٕ ذثاٌٍ اَحشافاخ جثٓح انًٕجح انُرائجذشٍش  .نظشٔف انشصذ انًلائًح

يٍ يرٕسط  (MSE) أ انرشتٍعً، تًٍُا ٌضٌذ يرٕسط انخط;.5نرثاٌٍ  5.575إنى  5.7نرثاٌٍ  =9:.5يٍ يرٕسط  (SR) َسثح سرشْم

علأج عهى رنك ٔجذَا أٌ صٌادج  غٍش حاسى (PSNR) ٔيع رنك فئٌ انرأشٍش عهى رسٔج َسثح الإشاسج إنى انضٕضاء  .969.:إنى  68;.5

ٕلد انحساتً عذد انخلاٌا انعصثٍح َٔسثح انرذسٌة لا ٌؤشش تشكم كثٍش عهى انُرائج انرً ذى انحصٕل عهٍٓا ٔنكُّ ٌؤشش تشكم يهحٕظ عهى ان

 .انًطهٕب

 

 .سرشْم، َسثح (MLPانثصشٌاخ انركٍفٍح، الاضطشاب انجٕي، انشثكح انعصثٍح، انشثكح انعصثٍح يرعذدج انطثماخ ) الكلمات المفتاحية:

 

 

 

 

 

 

 

 


