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Abstract Article Info. 

This work presents a five-period chaotic system called the Duffing 

system, in which the effect of changing the initial conditions and system 

parameters d, g and w, on the behavior of the chaotic system, is studied. This work 

provides a complete analysis of system properties such as time series, attractors, 

and Fast Fourier Transformation Spectrum (FFT). The system shows periodic 

behavior when the initial conditions xi and yi equal 0.8 and 0, respectively, then 

the system becomes quasi-chaotic when the initial conditions xi and yi equal 0 and 

0, and when the system parameters d, g and w equal 0.02, 8 and 0.09. Finally, the 

system exhibits hyperchaotic behavior at the first two conditions, 0 and 0, and the 

bandwidth of the chaotic signal becomes wider (2 a.u.) than in the first case. So, 

this system can be used in many physical applications, such as encrypting 

confidential information. 
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1. Introduction 
Chaos theory describes the qualities of the point at which stability moves to 

instability, or order moves to disorder. For example, unlike the behavior of a pendulum, 

which adheres to a predictable pattern, a chaotic system does not settle into a 

predictable pattern due to its nonlinear processes. Chaos can be defined as a dynamic, 

aperiodic system similar to noise but controlled by equations and sensitive to initial 

conditions [1]. These systems helped to understand and realize the behavior of systems 

that purify random behavior. Many chaotic models have been studied and applied in 

many fields of science, like electronic devices (optocoupler networks using LEDs) [2], 

secure communication using Lorenz systems [3, 4], Rossler systems [5, 6], Rossler-

Chua systems [7, 8], Lorenz-Chua systems [9, 10], image encryption based on 

computer-generated holograms [11], mathematics [12], weather [13], the biological 

field [13], as well as the study of fluid motion within an organism [14]. The first 

scientist to study and work in the field of chaotic systems was Lorenz in 1963 [15]. A 

group of researchers introduced new models to understand more about the behavior of 

this strange system, such as Chua and Rossler [16], which led to great and rapid 

progress in the science of chaos. The equations of chaotic systems can be represented by 

electronic circuits, as was done by the scientist Chua, who built the first simple 

electronic circuit that shows complex, chaotic behavior [17]. The Chua chaotic system 

is a simple electronic circuit used in different fields, some of which are 

communications. Accordingly, many implemented electronic circuits, such as RLC 

circuits, digital filters [18], energy storage circuits [17], capacitor circuits and electronic 

oscillators [19], exhibit complex, chaotic behavior [20]. New chaotic systems have 

emerged that differ from their predecessors, which have been used in many scientific 

fields [21-32]. Recently, the chaotic Duffing system has been introduced and studied for 

use in secure communications. 
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The aim of this work is to find ideal values for the initial conditions that make 

the behavior of the system excessively chaotic to obtain a broad spectral bandwidth that 

can be used in the field of secure communications. 

 

2. Modelling 
Engineer George Duffing (1861-1944) made early studies of nonlinear, chaotic 

dynamical systems and introduced the Duffing oscillator [33]. The Duffing oscillator is 

a second-order nonlinear differential equation used to model some oscillators of the 

driving and damping equations. The equation is given by [33]: 

 ̇                                                                                                                                                                           

 ̇                ( 
    

 
  )                                                                                     

where: the (unknown) function x=x(t) is the displacement at time t,  ̇ is the 

first derivative of x with respect to time. Duffing's equation is considered a nonlinear 

differential equation because it contains the term x
3
. The Duffing equations have 

parameters that control the amount of damping (d), the amplitude of the periodic driving 

force (g) and the angular frequency of the periodic driving force (w), which are real 

numbers equal to 0.02, 8 and 0.5, respectively at which the system becomes excessively 

chaotic. The behavior of the chaotic system is changing by changing the values of these 

parameters, so it may become oscillating, double-frequency, or quasi-chaotic. 

Many computer programs and numerical integration methods were used to solve 

nonlinear differential equations of all kinds. The Berkeley Madonna program was used 

in this work using the numerical integration of the type of Runge-Kutta 4, as shown in 

Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Flow-chart of Duffing model. 

 

The computer program begins by determining the time period to study the 

behavior of the chaotic system (t), which is a changeable value according to the 

researcher's goal of work; it was determined to be 0 a.u. to 100 a.u. Dt is the interval 

time that equals 1×10
-4

 a.u., and Dout is the control time (which can be used to control 

how much output data is stored independently of the step size used in the computer), 

which equals 0.04 a.u. After defining the time period, the values of the parameters that 

make the Duffing system in a chaotic state are presented, which are d =0.02, g = 8, and 

t = 0 to 500 
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w =0.5. Then the non-linear differential equations of the chaotic Duffing system are 

written in two dimensions, x and y. Finally, the values of the initial conditions xi1 and 

yi1, which make the behavior of the Duffing system in the chaotic state, are determined 

according to previous experiments on the mathematical model and are equal to 0 and 0, 

respectively. 

The program takes time to calculate the mathematical operations and show the 

results, depending on the values of the initial conditions and the value of the interval 

time Dt. One of the benefits of the chaotic system is its use in secure communication 

applications [3-11].  

 

3. Results and discussion 

The effect of changing the initial conditions (xi, yi) on the behavior of the chaotic 

system was analyzed and studied. Two different conditions were taken (0.8, 0) and (0, 

0). The MATLAB program, using Rang- Kuta 4
th

, was used to solve the differential 

equations, where the time scale taken was 500 a.u. The code results of Duffing system 

were as follows: The time series of all dynamics for Duffing system at initial condition 

(0.8, 0) are given in Figs. 2 and 3; Table 1 shows the amplitude values of all dynamics 

(peak to peak). From Figs. 2 and 3, it was noted that the system is in a periodic state 

evident through the fast Fourier transformation (FFT) spectra in x and y dynamics. 

Figs.4 and 5 show three distinctive peaks in the FFT spectrum of the x-dynamic and 

four distinctive peaks in the y-dynamic.  

 
Figure 2: Time series in the x-dynamic. The system parameters d, g, and w equal 0.02, 8, and 

0.5, respectively, at initial conditions xi and yi of 0.8 and 0, respectively. 
 

 
Figure 3: Time series in the y-dynamic. The system parameters d, g, and w equal 0.02, 8, and 

0.5, respectively, at initial conditions xi and yi equal 0.8 and 0, respectively. 
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Parameters 

(d, g, and w) 

Initial conditions 

xi, yi 

xp.p(a.u) yp.p(a.u) 
Dynamic state 

0.02, 8, and 0.5 0.8, 0 3:-3 3:-3 Periodic 

0.02, 8, and 0.5 0, 0 3:-3.8 7:-7 Hyper-chaotic 

0.02, 8 and 0.09 0, 0 3.5:-3.5 5.5:-5.5 Quasi-chaotic 

0.02, 8 and 0.45 0, 0 3.75:-3.75 7:-7 Chaotic 

0.02, 0.9 and 0.5 0, 0 2:-2 2.5:-2.5 Periodic 

0.02, 0.2 and 0.5 0, 0 1.8:-1.8 1.55:-1.6 Chaotic 

 

 
Figure 4: FFT spectrum in the x-dynamic. The system parameters d, g, and w equal 0.02, 8, 

and 0.5, respectively, at initial conditions xi and yi equal 0.8 and 0, respectively. 

 

 
Figure 5: FFT spectrum inthe y-dynamic. The system parameters d, g, and w equal 0.02, 8, 

and 0.5, respectively, at initial conditions xi and yi equal 0.8 and 0, respectively. 

 

Chaos theory describes the qualities of the point at which stability moves to 

instability or order moves to disorder. For example, unlike the behavior of a pendulum, 

which adheres to a predictable pattern, a chaotic system does not settle into a 

predictable pattern due to its nonlinear processes.  
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curves starting at any given point). When a simple change is made in the value of initial 

conditions in the x-dynamic, hyper-chaotic behavior results, as seen in Fig. 7 and 8, 

which represent the time series in the x and y-dynamics, where the two dynamics have 

different behavior with each other in position and amplitude of its peaks. To analyze the 

bandwidth of Duffing system, Fig. 9 and 10 show the FFT spectra in the x and y-

dynamics. It shows exponential decay behavior. The broadband and the values of 

maximum amplitudes, frequency bandwidth, and Full Width at Half Maximum 

(FWHM) are shown in Table 2. The reason for the increase in the bandwidth of the 

system is the emergence of many different frequencies with different amplitudes, which 

is one of the characteristics of the chaotic system.  

 

 
 

Figure 6: Phase space (y-x) attractor where the system parameters d, g, and w equal 0.02, 8, 

and 0.5, respectively, at initial conditions xi and yi equal 0.8 and 0, respectively. 

 

 

 
Figure 7: Time series in the x-dynamic. Tthe parameter system d, g, and w equal 0.02, 8 and 

0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 
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Figure 8: Time series in the y-dynamic. The system parameters d, g, and w equal 0.02, 8 and 

0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 
 

 

 
Figure 9: FFT spectrum in the x-dynamic. The system parameters d, g, and w equal 0.02,8 

and 0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 
 

 

 
Figure 10: FFT spectrum in the y-dynamic. The system parameters d, g, and w equal 0.02 ,8 

and 0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 
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Table 2: FFT spectra parameters the Duffing system 

Parameters 

(d, g, and w) 

Initial conditions 

xi, yi 

dynamics Amplitude (a.u) Bandwidth (a.u) 

0.02, 8 , and 0.5 0.8, 0 x 0.95 1.25 

0.02, 8 , and 0.5 0, 0 y 1.4 2 

0.02, 8 and 0.09 0, 0 x and y 2 and 0.6 0.7 and 1.5 

0.02, 8 and 0.45 0,0 x and y 1.6 and 1.3 1.2 and 1.5 

0.02, 0.9 and 0.5 0,0 x and y 1 and 0.8 0.8 and 0.9 

0.02, 0.2 and 0.5 0,0 x and y 0.45 and 0.45 0.6 and 1 

  

The Lyapunov exponent can quantitatively reflect the chaotic performance of a 

system [34]. A hyper-chaotic system can be described as containing more than one 

positive Lyapunov exponent, which indicates that these systems expand in many 

directions, leading to the emergence of a very complex attractor. The maximal 

Lyapunov exponent can be defined as follows: 

     
   

     
|   |

 

 
  

|      |

|   |
                                                                                                            

The limit |   |    ensures the validity of the linear approximation at any time. For a 

discrete time, a system (maps or fixed-point iterations)                   for an 

orbit starting with    this translates into: 

         
   

 

 
∑   |     |

   

   

                                                                                                        

The strange attractor for the two dynamics x and y is given in Fig. 11. Its shape 

has double scrolls with a complex topological structure. The double-scroll system is 

often described as having three nonlinear ordinary differential equations and a 3-

segment piecewise-linear equation (see Chua's equations). This makes the system easily 

simulated numerically and easily manifested physically due to Chua's circuits' simple 

design. 

 
Figure 11: Phase space, (y-x) attractor. The system parameters d, g, and w equal 0.02, 8 and 

0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 
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One of the important tools for studying chaotic behavior is the effect of w and g 

system parameters on changing chaotic behavior. Two different values of the w 

parameter, 0.09 and 0.45, were taken in this work. Figs. 12 and 13 represent the time 

series in the x and y-dynamic, where this system manifested a quasi-chaotic behavior at 

this value; this is evident in the time series of these figures. This behavior appears in the 

FFT spectra and attractor, as shown in Figs. 14, 15, and 16. When w equals 0.45, the 

system converts to chaotic behavior, as shown in Figs.17-21. More details of this 

change are shown in Tables 1 and 2. In the same manner, the effect of the g value on the 

system’s behavior was studied. When g equals 0.9, the system appears in a periodic 

state, as shown in Figs. 22-26: when g equals 0.2; the system becomes chaotic, as 

shown in Figs. 27-31.     

Through what has been studied, it has been observed that the behavior of the 

Duffing system depends mainly on a set of initial conditions, which are responsible for 

achieving the chaotic state of the system. Many initial conditions were changed, and it 

was noted that the Duffing system converts from one case to another depending on the 

changes in the values of its initial conditions.  
 

 
 

Figure 12: Time series in the x-dynamic. The system parameters d, g, and w equal 0.02, 8 and 

0.09, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

 
Figure 13: Time series in the y-dynamic. The system parameters d, g, and w equal 0.02, 8 and 

0.09, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 
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Figure 14: FFT spectrum in the x-dynamic. The system parameters d, g, and w equal 0.02, 8 

and 0.09, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

 
Figure 15: FFT spectrum in the y-dynamic. The system parameters d, g, and w equal 0.02, 8 

and 0.09, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

 

 
 

Figure 16: Phase space (y-x) attractor. The system parameters d, g, and w equal 0.02, 8 and 

0.09, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 
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Figure 17: Time series in the x-dynamic. The system parameters d, g, and w equal 0.02, 8 and 

0.45, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

 

 
Figure 18: Time series in the y-dynamic. The system parameters d, g, and w equal 0.02, 8 and 

0.45, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

 
Figure 19: FFT spectrum in the x-dynamic. The system parameters d, g, and w equal 0.02, 8 

and 0.45, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 
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Figure 20: FFT spectrum in the y-dynamic. The system parameters d, g, and w equal 0.02, 8 

and 0.45, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

 

 
Figure 21: Phase space (y-x) attractor. The system parameters d, g, and w equal 0.02, 8 and 

0.045, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

 

 
Figure 22: Time series in the x- dynamic. The system parameters d, g, and w equal 0.02, 0.9 

and 0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 
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Figure 23: Time series in the y-dynamic. The system parameters d, g, and w equal 0.02, 0.9 

and 0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

 

 
Figure 24: FFT spectrum in the x- dynamic. The system parameters d, g, and w equal 0.02, 

0.9 and 0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

 

 
 

Figure 25: FFT spectrum in the y-dynamic. The system parameters d, g, and w equal 0.02, 

0.9 and 0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 100 200 300 400 500

y
-d

y
n
am

ic
 

Time (a.u.) 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

In
te

n
si

ty
 (

a.
u
.)

 

Frequency (a.u.) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

In
te

n
si

ty
 (

a.
u
.)

 

Frequency (a.u.) 



Iraqi Journal of Physics, 2023                                                                            Vol. 21, No.2, PP. 44-59 

 

 56 

 
Figure 26: Phase space(y-x) attracter. The system parameters d, g, and w equal 0.02, 0.9 and 

0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

 

 
 

Figure 27: Time series in the x- dynamic. The system parameters d, g, and w equal 0.02, 0.2 

and 0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

 

 
 

Figure 28: Time series in the y-dynamic. The system parameters d, g, and w equal 0.02, 0.2 

and 0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 
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Figure 29: FFT spectrum in the x-dynamic. The system parameters d, g, and w equal 0.02, 

0.2 and 0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 

 

 

 
Figure 30: FFT spectrum in the y-dynamic. The system parameters d, g, and w equal 0.02, 

0.2 and 0.5, respectively at initial conditions xi and yi equal 0 and 0, respectively. 

 

 
 

 

Figure 31: Phase space(y-x) attracter. The system parameters d, g, and w equal 0.02, 0.2 and 

0.5, respectively, at initial conditions xi and yi equal 0 and 0, respectively. 
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4. Conclusions 
This work concludes that the Duffing system depends entirely on a set of initial 

conditions (xi, yi) and also on the parameters of the system d, g, and w. The initial 

conditions (xi, yi) equal to 0.8, 0 makes the system periodic at parameters d, g, and w 

equal to 0.02, 8, and 0.5; the system becomes hyper chaotic at (xi, yi) of (0, 0) at the 

same system parameter values. This is what we are looking for in our future work on 

information coding or secure communications.  
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 دراسة تأثير انشروط الأونية ومعهمات اننظاو عهى سهىك نظاو دافنك انفىضىي
 

مريان محمد منهم
1
رائذ كامم جمالو  

1
  

 قسٌ اىفٍصٌاء، ميٍة اىعيىً، جاٍعة بغداد، بغداد، اىعساق 1

 

 انخلاصة
ا فىضىٌاً ٍن خَس فتسات ٌسَى نظاً دافنل، حٍث ٌتٌ دزاسة تأثٍس تغٍٍ ًٍ س اىظسوف الأوىٍة وٍعيَات اىنظاً ٌقدً هرا اىعَو نظا

d  وg  وw قذم العول تحلٍلاً كاهلاً لخصائص النظام هثل السلاسل الزهنٍت والجارب وطٍف تحىٌل فىسٌٍه . عيى سيىك اىنظاً اىفىضىي

ىالً، ثن ٌصبح النظام على الت 8و  8.0تساوي  yiو  xiٌبذو أى النظام ٌظُهش سلىكًا دوسٌاً عنذها تكىى الظشوف الأولٍت (. FFT)السشٌع 

ٌظُهس أخٍسًا . 8.80و  0و  8.80ٌساوي  wو  gو  dوتكىى هعلواث النظام  8و  8تساوي  yiو  xiىظسوف الأوىٍة فىضىٌاً عنذها تكىى ا

ًٌا ٍفسطًا فً اىشسطٍن الأوىٍن  لى وٌصبح عشض النطاق التشددي للإشاسة الفىضىٌت أوسع هي الحالت الأو 8و  8اىنظاً سيىمًا فىضى

 .سسيبشنو عيى سبٍو اىَثاه فً اىتشفٍس اىَعيىٍات  ىعدٌد ٍن اىتطبٍقات اىفٍصٌائٍة، لزلك ٌوكي استخذاهه فً اa.u. 0لٍكىى  

 

 .فىضى، نظاً دوفٍنغ، ٍتسيسية شٍنٍة، جاذب، ٍعادلات اىتفاضيٍة اىغٍس خطٍة  :انكهمات انمفتاحيه
 

 


